
TWO QUESTIONS IN ERGODIC THEORY

NISHANT CHANDGOTIA

I apologise in the beginning for this pompous piece of writing. This was written long ago (2017
perhaps) as part of an application.

1. Cocycles over Interval Exchange Transformations

This question originated from a conversation with Zemmer Kosloff who mentioned the problem
in the case when n = 4.

Let I := [0, 1) be the unit interval with the Lebesgue measure and α := (α1, α2, . . . , αn) be a
probability vector with positive entries; n ≥ 2. Using the probability vector α we partition I into
n distinct intervals It; 1 ≤ t ≤ n: we let

βt :=
t∑

s=1

αs

It := [βt−1, βt).

Let π be a permutation on {1, 2, . . . , n}; απ is the probability vector obtained by permuting the
coordinates of α via π−1, that is,

απ := (απ−1(1), απ−1(2), . . . , απ−1(n)).

As above, we let

βπt :=

t∑
s=1

απs .

An interval exchange transformation for a probability vector α and permutation π is a probability
preserving transformation T(π,α) : I −→ I given by

T(π,α)(x) := x− βt−1 + βππ(t)−1 for x ∈ It.

Informally, this corresponds to the piece-wise isometry obtained by permuting the sequence of
intervals (I1, I2, . . . , In) to (Iπ(1), Iπ(2), . . . , Iπ(n)).

The importance of IETs cannot be overstated in contemporary mathematics with connections
to several different fields and many interesting questions, some answered and many which are yet
to be resolved (for a general introduction one may consider [37]).

As an (important) example, consider a cyclical permutation π(s)(t) = t + s (mod n); s ≤ n − 1
and a positive probability vector α ∈ Rn; the corresponding interval exchange transformation
(henceforth IET) T(π,α) is the rotation on the circle for the angle

∑n
t=n−s αt where addition is modulo

one. In fact T(π,α) is a rotation if and only if π is a cyclical permutation of the aforementioned
type. Automatically, if n = 2 then T(π,α) is isomorphic to the rotation on the circle. We will
assume throughout that π is irreducible meaning that π({1, 2, . . . , k}) = {1, 2, . . . , k} implies k = n;
otherwise the corresponding IET is not minimal (there are orbits which are not dense).

Having fixed an n ≥ 2 and an irreducible permutation π, we can parametrise the IETs by the
space of probability vectors with n positive entries with the appropriate Lebesgue measure. From
here on, when we state an almost everywhere property of IETs we mean it with respect to this
Lebegue measure (having fixed an n ≥ 2 and an irreducible permutation). There is a vast literature
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on such properties of IETs: almost every IET is minimal ([21]), almost every IET is uniquely ergodic
([25], [36] and also look at [5]), IETs are never mixing [20] and almost every IET is weakly mixing
(provided they are not rotations) [3] to name a few.

However there is lesser information available (and large scale interest) about skew products over
IETs. Given a measurable function (called a cocycle) φ : I −→ R and IET T : I −→ I, we can
consider the corresponding skew-product T φ : I × Γ −→ I × Γ given by

T φ(x, r) := (T (x), r + φ(x));

where Γ is closed group generated by the image of φ; it preserves the product of the Lebesgue
measure and the Haar measure on the group Γ. These constructions are of interest for several
reasons; one immediate reason being that the ergodic sums of φ can be analysed by iterates of the
map. Indeed,

(T φ)n(x, r) := (Tn(x), r + φ(x) + φ(T (x)) + φ(T 2(x)) + . . .+ φ(Tn−1(x))).

Question 1.1. Let φ : I −→ R be a step function with integral zero. For almost every IET,
T : I −→ I, is the skew product T φ is ergodic?

Let us briefly survey what is known about the question. In the following the characteristic
function of a set A ⊂ I is denoted by χA. Let us first assume that π is a permutation such that
T(π,α)’s are rotations. By [8], the answer is affirmative in the case φ = χ[0, 1

2
) −

1
2 . Answering

a question of Veech [35, 34], Ishai Oren proved in [27] that the answer is affirmative for φ =
χ[0,γ) − γ; γ ∈ (0, 1). In [1], it was proven to be affirmative in the case φ is a step-function with
rational discontinuities. Using ideas from [32] we believe it is an easy exercise to resolve the question
completely in the case when T is a rotation.

The critical component of these proofs which assists us in resolving the question is the so-called
Denjoy-Koksma inequality (consider the introduction in [24]) as a result of which we find, for a
rotation by an irrational angle δ, there exists a sequence of times tn ∈ N such that tnδ converges to
0 and the ergodic sums of φ until time tn are uniformly bounded in n. Outside some very special
cases, we do not know the existence of any such inequality for IETs. The following works come to
mind: by Conze and Fra↪czek [9], Ralston and Troubetzkoy [30], Fra↪czek and Ulcigrai [15], Hooper
and Weiss [19].

2. Measures of Maximal Entropy for Hom-shifts

This question has taken inspiration from several discussions with and results by Ron Peled and
Yinon Spinka and has been spelled out among us at several occasions.

In this section we will assume some basic knowledge in dynamical systems, particularly of ther-
modynamic formalism; with reasonable faith this prerequisite can be ignored [31, 22].

Let (X,T ) be a topological dynamical system, meaning, X is a compact metric space and T

is a Zd-action on X by means of homeomorphisms; we write T
~i to represent the action of ~i on

X. The study of dynamical systems (or structures in mathematics in general) is often dominated
by the study of its invariants (under various notions of isomorphism). One such invariant is the
topological entropy which we denote by htop(X). In the same vein, the measure theoretic entropy is

an invariant for probability preserving transformations (X,µ, T ) (meaning T
~i preserves the measure

µ) and is denoted by hµ. Given a dynamical system (X,T ), we denote the set of invariant probability
measures on (X,T ) by M(X). The variational principle states that

sup
µ
hµ = htop(X).

Under technical assumptions (which shall always hold in this section); the supremum is achieved.
The measures achieving the maximum are called measures of maximal entropy. The dynamical
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systems that we care about in this section have positive entropy while IETs (as in the previous
section) have zero entropy. Thus all invariant probability measures for the IETs are measures of
maximal entropy.

If one observes a dynamical system (X,T ) via the values of a function f : X −→ R, one would
like to ensure that the average long term behaviour is stable under the choice of the point; this
is the content of the ergodic theorem given an ergodic probability measure on the space X. In
addition, one would also like to avoid getting caught up in the extraneous parts of the dynamical
system and hence one might wish to pick points in accordance with one of the measures of maximal
entropy. It is thus to be expected that the dynamical systems (models) that we work with and
consider ‘natural’ have at most finitely many ergodic measures of maximal entropy.

Many dynamical systems exhibit such properties and we won’t be able to do justice to the vast
literature on the subject in this margin space. Instead we slowly trudge towards the setting of
our question. Some well known classical models where such phenomena takes place are the Ising
model (look at work by Aizenmann [2], Higuchi [18] and Bodineau [4]) and the Potts model (look
at [10]). The well-versed reader, who might complain saying that it does not fall in the paradigm
described above, could take notice that for the Ising Model and the Potts model, due the theorems
of Dobruschin [11], Lanford and Ruelle [23] the set of Gibbs states (invariant under translation of
the lattice) equal the set of equilibrium states (with a suitable potential); equilibrium states are
close cousins of the measures of maximal entropy and the results stated above are of immediate
interest to us.

Let H be a finite undirected graph. By Zd, we denote both the group and its Cayley graph with
respect to the standard generators. A graph homomorphism from a graph G to a graph H is a map
from the vertex set of G to the vertex set of H which preserves adjacency. Let us denote the set of
graph homomorphisms by Hom(G,H). The set Hom(Zd,H) automatically forms a Zd- dynamical
system where the set of homomorphisms is given the product topology making it a compact space
and Zd acts upon it by translations called the shifts:

σ
~i(x)(~j) := x(~i+~j) for all x ∈ Hom(Zd,H),~i,~j ∈ Zd.

These are called hom-shifts; they form a special yet large (and important) class of the so-called
shifts of finite type [7]. Here are a few examples.

(1) The hard-core model is a hom-shift for the graph with vertices labelled 0 and 1 and edges

(0, 0), (0, 1); it consists of configurations (elements of {0, 1}Zd
) in the symbols 0, 1 for which

adjacent symbols can’t both be 1.
(2) The k-coloured chessboard is a hom-shift for the complete graph with vertices labelled

1, 2, . . . , k; it consists of configurations (elements of {1, 2, . . . , k}Zd
) in the symbols 1, 2, . . . , k

for which adjacent symbols are distinct.

Question 2.1. Is it true that all hom-shifts have finitely many ergodic measures of maximal en-
tropy?

There are several indications towards an affirmation. We state a few. By Z∞, let us denote the
direct sum of a countable copies of the integers Z. The group Z∞ is amenable and Hom(Z∞,H)
can be thought of as a ‘limit’ of finite-dimensional dynamical systems Hom(Zd,H). It has been
proven in [26], Hom(Z∞,H) have finitely many ergodic measures of maximal entropy (under the
technical assumption that they are invariant under permutations of the coordinates as well).

These results have been further bolstered by recent (unpublished) work by Ron Peled and Yinon
Spinka. Here they are extending on techniques (by the authors and Ohad Feldheim [29, 13, 14])
and developing many novel ideas to prove for a large class of graphs and sufficiently high dimension
d, Hom(Zd,H) have finitely many measures of maximal entropy; the class of graphs includes those
corresponding to the k-coloured chessboard and the hard-core model.

3



One sign of encouragement is that the results of [26] and Ron Peled and Yinon Spinka seem to
indicate a similar phenomena. Given a graph H, a phase in H is an unordered pair of subsets of the
graphs (A,B) such that each vertex in A is adjacent to each vertex in B. A maximal phase in H
is one which maximises the product |A||B|. For instance, the maximal phase for the graph for the
hard core model is ({0}, {0, 1}) while the AM-GM inequality implies that the maximal phases of
complete graph with k vertices are precisely the disjoint sets (A,B) where {|A|, |B|} = {bk2c, d

k
2e}.

Meyerovitch and Pavlov show that the measures of maximal entropy (which are invariant under
the permutation of coordinates) are the ones where the partite classes of Z∞ are mapped (with the
uniform Bernoulli distribution) to A and B respectively. For finite (but large enough dimension)
similar phenomena has been obtained by Ron Peled and Yinon Spinka under certain assumptions
on the graph H. While we do not expect the phenomena to persist verbatim to lower dimensions
(in fact it does not), it still gives an indication of what one must look for.

For smaller dimensions results are fewer and sparser. For example one may look at the hard-core
model for d = 2 ([28, Theorem 3.13] and [33]) , k-coloured chessboard for k ≥ 3.6d [16] (> 4d
follows from Dobruschin uniqueness condition as in [12], [17, Chapter 8]; probably much better
bounds are known), the iceberg model [6].

Most of these results are not easy to prove; the hope is that just obtaining an upper bound
on the number of ergodic measures of maximal entropy for hom-shifts (in terms of the number of
maximal phases of the corresponding graph) should be more accessible.
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