
A SHORT NOTE ON THE PIVOT PROPERTY

NISHANT CHANDGOTIA

Abstract. By Zd we mean the Cayley graph of Zd with respect to standard generators. Let
Hom(Zd,H) denote the space of graph homomorphisms from Zd to an undirected graph H. We
say that Hom(Zd,H) has the generalised pivot property if there exists a finite subset F ⊂ Zd such
that for all x, y in Hom(Zd,H) there exists a sequence of homomorphisms x1 = x, x2, . . . , xn = y ∈
Hom(Zd,H) for which xi, xi+1 differ at most on some translate of F . In this note, we give a short
introduction to the generalised pivot property followed by an example by Tim Austin of a graph
H for which Hom(Z2,H) does not have the generalised pivot property. We end with a discussion
on the generalised pivot property for other subshifts like the Sturmians based on a discussion with
Ville Salo.

0.1. Hom-shifts and the Generalised Pivot Property. LetH denote a finite undirected
graph and Zd denote both the group and its Cayley graph with respect to standard gener-
ators; by a site we mean an element of Zd. We denote adjacency in a graph G by ∼G, that
is, we say that v ∼G w if (v, w) form an edge in G. A graph homomorphism x : G −→ H is a
vertex map such that if i ∼G j then xi ∼H xj; we write xi to mean x(i). Hom(G,H) denotes
the set of graph homomorphisms from G to H.

The set of all graph homomorphisms from Zd to H, Hom(Zd,H) is called a hom-shift and

naturally forms a dynamical system under the shift maps: for all~i ∈ Zd, σ~i : Hom(Zd,H) −→
Hom(Zd,H) is the map

(σ
~i(x))~j := x~i+~j.

Thus Zd acts by homeomorphisms on Hom(Zd,H), where the topology on the space of graph
homomorphisms is the product over the discrete topology on H.

This is a natural class of Zd models covering a large class of examples:

(1) If H is the graph in Figure 1 then Hom(Zd,H) is the space of 0, 1 configurations with
no two adjacent 1s. This is called the hard-core model.

(2) Let Kn denote the complete graph on n vertices {1, 2, . . . , n}. Then Hom(Zd, Kn)
is the set of proper n-colourings of Zd, that is, maps from Zd to the colour set
{1, 2, . . . , n} such that adjacent colours are distinct.

In the field of symbolic dynamics, these are the so-called vertex shifts. Look at [4] and
references within for further information on how these tie in with the field of symbolic
dynamics.

0 1

Figure 1. The graph for the hard-core model.
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Given a graphH, a pivot move is a pair of homomorphisms x, y ∈ Hom(Zd,H) which differ
at most on a single site. The space of homomorphisms Hom(Zd,H) has the pivot property if
for all x, y ∈ Hom(Zd,H) which differ at finitely many sites there exists a sequence of pivot
moves starting from x and ending at y. We wish to address the following question:
Question: When do hom-shifts have the pivot property?

We will need the following property to be able to state a few examples: Let NH(v) := {w ∈
H : w ∼H v}. We say that v folds into w if NH(v) ⊂ NH(w) and concurrently we say H
folds into H\{v}. A graph H is bipartite-dismantlable if there exists a sequence of successive
folds H = H1,H2, . . . ,Hn such that Hn is a single vertex, a single vertex with a self-loop or
a graph with exactly two vertices joined by an edge. Any finite tree is bipartite-dismantlable
because the leaves of a tree can be folded succesively to obtain a smaller tree; iterating the
process leads to a graph with exactly two vertices joined by an edge. Further if there is a
vertex ? which is connected to all the vertices of H (including itself) then it is dismantlable
as well: the vertices of H can be folded into ? one by one; ? is called a safe symbol for the
space Hom(Zd,H). Observe that 0 is safe symbol for Hom(Zd,H) when H is the graph in
Figure 1. On the other hand, none of the vertices of Kn can be folded for any n.

Folding and dismantlability were introduced in [13] to characterise cop-win graphs. It
follows from the proof of [3, Theorem 4.1] that if H folds into the graph H′ then Hom(Zd,H)
has the pivot property if and only if Hom(Zd,H′) has the pivot property as well. Before we
delve into examples, we will like to remark that ifH is a disconnected graph with components
H1,H2, . . . ,Hn then Hom(Zd,H) has the pivot property if and only if Hom(Zd,Hi) has the
pivot property for all i. Let us look at a few examples and the main ideas involved in proving
that they have the pivot property.

(1) If H is bipartite-dismantlable then Hom(Zd,H) has the pivot property; this follows
easily from [3, Theorem 4.1]. Let us observe this in the simple case when Hom(Zd,H)
has a safe symbol ?: If x, y ∈ Hom(Zd,H) differ exactly on a finite set F , we can
replace symbols in x|F and y|F by ? one at a time to get a common homomorphism
z. Since ? ∼H v for all v ∈ H, each intermediate configuration is also a graph
homomorphism.

(2) Let Cn denote the cycle of length n with vertices {0, 1, 2, . . . , n − 1}. We say that
a graph H is four-cycle hom-free if for all homomorphisms f : C4 −→ H either
f(0) = f(2) or f(1) = f(3). If H does not have a self-loop then this condition is
equivalent to not having C4 as a subgraph. The graph C3 and the graph given in
Figure 1 are examples of four-cycle hom-free graphs. C4 is a subgraph of K4; it is not
a four-cycle hom-free graph. It was well-known that Hom(Zd, C3) (which is the same
the space of proper 3-colourings) has the pivot property. We further extended the
result in [7] to prove that Hom(Zd, Cn) has the pivot property for all n. In [4], it was
proved that if H is a four-cycle hom-free graph without self-loop then Hom(Zd,H)
has the pivot property; this proof easily extends to all four-cycle hom-free graphs.
One of the main idea for these proofs uses height functions : the so-called universal
cover of a graph H is a tree UH with a cannonical covering map π : UH −→ H. For
instance, the universal cover of C3 is Z and the covering map is the map mod 3. If
H is a four-cycle hom-free graph then for any x ∈ Hom(Zd,H) there exists a unique
height function, that is, x′ ∈ Hom(Zd, UH) such that π ◦ x′ = x up to a choice of x′~0.
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Figure 2. To show that Hom(Z2,K5) does not have the pivot property: the sym-
bols in the rectangle can be switched but no individual symbol can be changed on
its own.

(3) The space Hom(Zd, Kn) for n ≥ 2d + 2 has the pivot property. This is well-known;
for a proof look in [7, Proposition 3.4]. The following is a key idea which is used to

prove this: For all ~i ∈ Zd and x ∈ Hom(Zd, Kn) we can change x at ~i to a vertex

in Kn \ (x(NH(~i) ∪~i)) to get another homomorphism. This allows us, for instance,
to remove all appearances of any chosen colour by changing one site at a time on a
finite set F ⊂ Zd.

The keen reader will observe that the proof of the pivot property for three class of examples
mentioned above follow from very distinct techniques. We wonder if there is some way to
introduce a general technique of proof which works for the examples mentioned above.

Not all Hom(Z2,H) has the pivot property. Consider a homomorphism in Hom(Z2, K5)
be obtained by tiling the plane with the pattern given in Figure 2. It is clear that the
symbols in the box can be interchanged but no individual symbol can be changed. Therefore
Hom(Z2, K5) does not have the pivot property. Similarly it can be shown that Hom(Z2, K4)
does not have the pivot property either.

Given a graph H and a finite set F ⊂ Zd, a generalised pivot move for the shape F is a pair
of graph homomorphisms x, y ∈ Hom(Zd,H) such that x, y differ at most on some translate
of F . A space Hom(Zd,H) has the generalised pivot property if there is a finite subset
F ⊂ Zd such that for all x, y ∈ Hom(Zd,H) there exists a sequence of generalised pivot
moves starting from x and ending at y for the shape F . A space having the pivot property
has the generalised pivot property for F = {~0}. The following question is of interest:
Question: When do hom-shifts have the generalised pivot property?

It can be proved (but we do not prove this here) that Hom(Z,H) has the generalised
pivot property for any graph H. We have already seen from the examples that Hom(Z2, Kn)
has the pivot property for n 6= 4, 5. It can be shown that they have the generalised pivot
property [2] (The case for n = 4 is from Raimundo Briceño). Let us see why this is true for
n = 5; we indicate later in this section why does Hom(Z2, K4) have the generalised pivot
property.

Observe that given a map a : NZd(~0) −→ K5 there exists b ∈ Hom(NZd(~0) ∪ {~0},H) such
that b|NZd (~0) = a. This is called the single site filling (SSF) property.

Proposition 0.1. [2] If Hom(Zd,H) is SSF then it has the generalised pivot property for
the shape D1.
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First some notation, which we will use throughout the text. For all F ⊂ Zd, we will denote
the external vertex boundary of F by

∂F := {~j ∈ Zd \ F : ~j ∼Zd ~i for some ~i ∈ F}

and the l1-ball in Zd centered at ~0 and of radius n by Dn. For homomorphisms x, y ∈
Hom(Zd,H) let

F (x, y) := {~i ∈ Zd | x~i 6= y~i}
denote the set of sites where they differ.

Proof. Let ~j ∈ Zd be given and consider z̃ ∈ Hom(Zd \ (F (x, y) ∩ ∂{~j}),H) given by

z̃~i :=

{
x~i if ~i = ~j or x~i = y~i
y~i if ~i ∈ (D1 +~j)c.

Since Hom(Zd,H) is SSF there exists z ∈ Hom(Zd,H) such that

z|Zd\(F (x,y)∩∂{~j}) = z̃.

Observe that y and z differ at most on D1 + ~j and F (x, z) ( F (x, y). By induction on
|F (x, y)| the proof is complete. �

The following comes from Raimundo Briceño [1]. The space Hom(Z2, K4) is not SSF but
it does satisfy a more general property: Let B2 := {1, 2} × {1, 2} ⊂ Z2 be the induced
subgraph. Given any a ∈ Hom(∂B2, K4) there exists b ∈ Hom(B2 ∪ ∂B2, K4) such that
b|∂B2 = a; there are two cases to consider:

Case(i) In this case

{a(0,1), a(1,0), a(2,3), a(3,2)} = {a(0,2), a(1,3), a(2,0), a(3,1)} = {1, 2, 3, 4}.
Then either

{a(0,1), a(1,0)} ∩ {a(0,2), a(1,3)} 6= ∅ or {a(0,1), a(1,0)} ∩ {a(2,0), a(3,1)} 6= ∅.
Without loss of generality assume that the former is true. It follows that

{a(2,3), a(3,2)} ∩ {a(2,0), a(3,1)} 6= ∅.
Set b(2,1) ∈ {a(0,1), a(1,0)} ∩ {a(0,2), a(1,3)} and b(1,2) ∈ {a(2,3), a(3,2)} ∩ {a(2,0), a(3,1)}.
Finally set

b(1,1) ∈ {1, 2, 3, 4}\{a(0,1), a(1,0), b(1,2), b(2,1)}, b(2,2) ∈ {1, 2, 3, 4}\{a(2,3), a(3,2), b(1,2), b(2,1)} and b|∂B2 = a.

It follows from the assumptions that b ∈ Hom(B2 ∪ ∂B2,H).
Case(ii) In this case either

{a(0,1), a(1,0), a(2,3), a(3,2)} 6= {1, 2, 3, 4} or {a(0,2), a(1,3), a(2,0), a(3,1)} 6= {1, 2, 3, 4}.
Without loss of generality assume that the former is true. Set

b(1,1) = b(2,2) ∈ {1, 2, 3, 4} \ {a0,1, a(1,0), a(2,3), a(3,2)}.
Finally set

b(1,2) ∈ {1, 2, 3, 4} \ {b(1,1), a(0,2), a(1,3)}, b(2,1) ∈ {1, 2, 3, 4} \ {b(1,1), a(3,1), a(2,0)} and b|∂B2 = a.

It follows from the assumptions that b ∈ Hom(B2 ∪ ∂B2,H).
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This can be used to prove that Hom(Z2, K4) has the generalised pivot property for the
shape B2 ∪ ∂B2 ∪ ∂(∂B2).

0.2. Markov random fields, motivation and some other related questions. For
us one of the key motivations for looking at the pivot property was the study of Markov
random fields and Gibbs states which we now explain; for more details and background on
the problem look in [6, 7, 5]. Let G = (A, E) always be a locally finite undirected graph
without self loops. A, also referred to as the alphabet is a finite set. Given a set A ⊂ V and
a pattern a ∈ AA and y ∈ AV such that y|A = a, we denote by

[y]A := [a]A := {x ∈ AV : x|A = a}.

the cylinder set for a. Given a probability measure µ we denote by supp(µ) the topological
support of µ,

supp(µ) := {x ∈ AV : µ([x]A) > 0 for all finite A ⊂ V}.

A probability measure µ on AV is called a Markov random field (MRF) if for all finite
A,B ⊂ V satisfying ∂A ⊂ B ⊂ Ac and patterns a ∈ AA, b ∈ AB

µ([a]A | [b]B) = µ([a]A | [b]∂A) whenever µ([b]B) > 0.

A finite range interaction is a function φ : {a ∈ AA : A ⊂ V finite} −→ R such that there is
an n for which φ([a]A) = 0 if diameter of A is bigger than n; a nearest neighbour interaction
is a finite range interaction for n = 1. An MRF µ is a Gibbs state with interaction φ if for
all x ∈ supp(µ)

µ([x]A | [x]∂A) :=
e
∑

C⊂A∪∂A φ(x|C)

ZA,x|∂A

where Z|A,x|∂A is the normalising factor.
A fundamental problem coming from statistical physics is the following: Under what

assumptions on the support are the MRFs, Gibbs for some nearest neighbour interaction.
We are interested in the question: Suppose µ is a shift-invariant MRF, such that supp(µ) =
Hom(Zd,H); when is µ Gibbs for some shift-invariant nearest neighbour interaction? A
celebrated theorem which brought forth such questions to the forefront is the Hammersley-
Clifford theorem [9]; it implies the conclusion for Hom(Zd,H) which have a safe symbol.
This was generalised in [5] for the case when H is bipartite-dismantlable. In a different
direction, it was proved in [7] that the conclusion holds for Hom(Zd, Cn). For d = 1, no
assumption is required on the graph H [6].

For studying this question, the formalism of Markov and Gibbs cocycles was introduced
in [7] (look in it for more details); these are parametrisations of the so-called Markov and
Gibbs specifications or the collections of consistent conditional probability distributions on
patterns on all the finite subsets F of Zd given the pattern on ∂F . Let us now formally
define cocycles (with respect to the homoclinic relation):

Let the homoclinic relation on Hom(Zd,H) be denoted

∆d
H := {(x, y) : x, y ∈ Hom(Zd,H) differ at most on finitely many sites}.

A cocycle (with respect to the homoclinic relation) is a function M : ∆d
H −→ R such that

M(x, y) = M(x, z) +M(z, y) for (x, z), (z, y) ∈ ∆d
H.
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A Markov cocycle is a cocycle where M(x, y) depends only on x|F∪∂F , y|F∪∂F where F is the
set of sites on which x and y differ; in other words, if (z, w) ∈ ∆d

H is another pair such that

z|F∪∂F = x|F∪∂F , w|F∪∂F = y|F∪∂F
and z|F c = w|F c

then M(x, y) = M(z, w). Further a Markov coycle is called Gibbs for a nearest neighbour
interaction φ if

M(x, y) :=
∑

C⊂Zd finite

φ(y|C)− φ(x|C) for all (x, y) ∈ ∆d
H;

the sum is well defined because there are at most finitely many sets C for which φ(x|C) 6=
φ(y|C).

Markov and Gibbs cocycle appear naturally in the study of the aforementioned questions:
A measure µ is a shift-invariant MRF (Gibbs state with a shift-invariant nearest neighbour
interaction φ) supported on Hom(Zd,H) if and only if

Mµ(x, y) := lim
C→Zd

log
µ([y]C)

µ([x]C)
for (x, y) ∈ ∆d

H

is a shift-invariant Markov cocycle (Gibbs cocycle for φ); an important observation which
helps in understanding this is that

Mµ(x, y) = log
µ([y]C)

µ([x]C)

where F ∪∂F ⊂ C, F being the set of sites on which x and y differ if and only if µ is an MRF.
Look at [7, Section 3] for a proof. However it is not true that every shift-invariant Markov
cocycle M arises as M = Mµ for a shift-invariant MRF µ fully supported on Hom(Zd,H);
an example is provided in the case where H = Cn for n 6= 4 in [7].

Let Md
H and Gd

H denote the space of shift-invariant Markov and Gibbs cocycles for some
shift-invariant nearest neighbour interaction on Hom(Zd,H) respectively; they form a real
vector space under pointwise addition and scalar multiplication. By definition, Gd

H ⊂Md
H;

if Gd
H = Md

H then it follows that every shift-invariant MRF supported on Hom(Zd,H) is a
Gibbs state for some shift-invariant nearest neighbour interaction. The converse is not true;
we prove in [7] that

dim(Gd
Cn

) = n− 1, dim(Md
Cn

) = n for n 6= 1, 2, 4

while every shift-invariant MRF on Hom(Zd, Cn) is Gibbs for some nearest neighbour inter-
action. If H is a bipartite-dismantlable graph, then it is proved in [5] that

Gd
H = Md

H.

Observe that the set of shift-invariant nearest-neighbour interactions onHom(Zd,H) forms
a finite dimensional vector space (for pointwise addition and scalar multiplication) and the
map taking an interaction φ to the corresponding Gibbs cocycle for φ is linear; it follows that
Gd
H is a finite dimensional vector space. The natural question which arises is the following:

When is Md
H finite-dimensional?

It is proved in [7] that if Hom(Zd,H) has the generalised pivot property then Md
H is a

finite dimensional space: Suppose Hom(Zd,H) has the generalised pivot property for the
shape F and M ∈Md

H. If (x, y) ∈ ∆d
H then by the generalised pivot property it follows that
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there is a sequence x = x1, x2, . . . , xn = y ∈ Hom(Zd,H) such that xi, xi+1 differ at most
on some translate of F . By the shift-invariance of M it follows that M can be determined
by the values M(z, w) for z, w satisfying z|F c = w|F c ; there are finitely many distinct values
by the Markov property and the shift-invariance of the cocycle. We are liable to answer the
following question:
Question: Is dim(Md

H) computable given that Hom(Zd,H) has the generalised pivot prop-
erty for a given shape F?

Under these conditions it is not hard to see that dim(Gd
H) is computable: As mentioned

before the map taking a shift-invariant nearest neighbour interaction to the corresponding
shift-invariant Gibbs cocycle is surjective and linear; the projection map of Gd

H to pairs (x, y)
which differ at most on F is a bijective linear map onto a finite dimensional vector space; the
finite dimensionality is a result of the Markov property. Finally dim(Gd

H) can be computed
using the rank-nullity theorem.

This was our initial motivation for looking at the generalised pivot property; similar prop-
erties have appeared in many different places. We mention a few:

(1) Such a property was considered in [14] for possible applications to the problem of
encoding data in storage systems. This is very similar to the language connectivity
introduced in Section 0.4; a key difference is that the constraints defining the patterns
change with the size of the box.

(2) Such a property was also considered in [15, 17] to deduce certain invariants of tilings
(by the so-called ribbon tilings) of fixed finite region R.

(3) Suppose we were to sample a random graph homomorphism from a box B ⊂ Zd
to H with respect to the uniform distribution. One of the standard techniques is
to run a Markov chain on Hom(B,H) with the following transition (Look at [12,
Chapter 3] for more background): Fix a set F ⊂ B. Given x ∈ Hom(B,H), choose a

translate of F +~i uniformly in B and resample the homomorphism x on F +~i (with
respect to the uniform distribution). The Markov chain (independent of the starting
homomorphism) converges to the uniform distribution if and only if the corresponding
Markov chain is transitive. Transitivity of this Markov chain is a property very close
to the generalised pivot property but it is not clear if either implies the other.

(4) In [18], the following problem is considered as an instance of a reconfiguration prob-
lem: Given finite graphs G (without self-loops) and H and x, y ∈ Hom(G,H) what is
the complexity (in terms of |G|) of determining whether x can be transformed into y
changing one site at a time.

(5) A similar property also appeared in [10, Section 9] in the context of building topo-
logical models. Look in Section 0.4 for more details.

0.3. Example of a Hom-Shift which does not have the Generalised Pivot Prop-
erty. In this subsection we will present a construction of a graph by Tim Austin for which
Hom(Z2,H) does not have the generalised pivot property. From the discussions in the pre-
vious subsection, the graph must have at least one four-cycle and not be too well connected
at the same time (so that Hom(Z2,H) does not have a SSF like property.)

Let Hstart be the graph given by Figure 3. Observe that Hstart is a coordinate-wise graph
product of C4 and a path graph of length five. The five copies of C4 along the path graph
have been labelled as (T, I,M,R, P ) (thumb, index, middle, ring and pink) with numerical
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Figure 3. A basic component for the construction of H such that Hom(Z2,H)
does not have the pivot property: Hstart.
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Figure 4. A graph H for which Hom(Z2,H) does not have the generalised pivot
property; vertices with the same label have been identified.

suffixes to indicate the position in each individual copy of C4. The vertices prefixed by T
are the left most and the one by P are the right most copies of C4.

Now make two isomorphic copies of the graph Hstart calling them H′Start and H′′Start; for
vertices labelled v in Hstart the corresponding vertices in H′start and H′′start are labelled v′ and
v′′ respectively. To obtain the graph H, we make the following identifications:

(1) The left most vertices Ti are identified with T ′i and T ′′i for 1 ≤ i ≤ 4.
(2) The right most vertices Pi are identified with P ′i and P ′′i for 1 ≤ i ≤ 4.
(3) The central vertices in Hstart, M1 and M3 are identified.

This is illustrated in Figure 4: the topmost graph is the copy of Hstart after identification;
the middle and bottom are H′start and H′′start respectively; vertices with the same label have
been identified.
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In the following we will use some special walks on the graph H, for instance,

(M1, I1, (T1, I1′,M1′, R1′, P1, R1′′,M1′′, I1′′)n, T1, I1′,M1′, R1′, P1, R1)∞;

informally a walk like this can be thought of a walk on the 1st (the label of the vertices
ends at 1) track where it starts in Hstart, cycles n times in between H′start and H′′start finally
returns to Hstart via H′start. Similar walks are considered on the 2nd, 3rd and the 4th track.
We note a few important properties of the graph which we shall later utilise:

Property (1): Between any two alternate terms v, w in the walks on the graph H
(M1, I1, (T1, I1′,M1′, R1′, P1, R1′′,M1′′, I1′′)n, T1, I1′,M1′, R1′, P1, R1)∞

(M2, I2, (T2, I2′,M2′, R2′, P2, R2′′,M2′′, I2′′)n, T2, I2′,M2′, R2′, P2, R2)∞

(M1, I3, (T3, I3′,M3′, R3′, P3, R3′′,M3′′, I3′′)n, T3, I3′,M3′, R3′, P3, R3)∞

(M4, I4, (T4, I4′,M4′, R4′, P4, R4′′,M4′′, I4′′)n, T4, I4′,M4′, R4′, P4, R4)∞

there is a unique vertex adjacent to them for all n.
Property (2): Given any two vertices v, w 6= M1 ∈ H there exists at most two vertices

adjacent to both of them.
Property (3): Given any vertex v 6= M1 ∈ H there exists at most three vertices adjacent to

both v and M1.

Now fix n ∈ N. We will construct distinct homomorphisms (xn, yn) ∈ ∆2
H such that

for all z 6= xn ∈ Hom(Z2,H), the diameter of the set of sites where xn and z differ,
diameter(F (xn, z)) ≥ 8n+ 7. The case for n = 1 has been illustrated in Figure 5. Set

xn|{(i,0) : −4n−4≤i≤4n+3} as

M1, I1, (T1, I1′,M1′, R1′, P1, R1′′,M1′′, I1′′)n, T1, I1′,M1′, R1′, P1, R1

xn|{(i,1) : −4n−4≤i≤4n+3} as

M4, I4, (T4, I4′,M4′, R4′, P4, R4′′,M4′′, I4′′)n, T4, I4′,M4′, R4′, P4, R4

xn|{(i,2) : −4n−4≤i≤4n+3} as

M1, I1, (T1, I1′,M1′, R1′, P1, R1′′,M1′′, I1′′)n, T1, I1′,M1′, R1′, P1, R1

xn|{(i,3) : −4n−4≤i≤4n+3} as

M2, I2, (T2, I2′,M2′, R2′, P2, R2′′,M2′′, I2′′)n, T2, I2′,M2′, R2′, P2, R2

and then periodically tile the plane with this pattern to obtain the homomorphism xn ∈
Hom(Z2,H). For the homomorphism yn set

yn|{(i,0) : −4n−4≤i≤4n+3}

as M1, I3, (T3, I3′,M3′, R3′, P3, R3′′,M3′′, I3′′)n, T3, I3′,M3′, R3′, P3, R3 and

yn(i,j) := xn(i,j) for j 6= 0 or i > 4n+ 3 or i < −4n− 4.

We claim that for any z ∈ Hom(Z2,H) either z = xn or diam(F (xn, z)) ≥ 8n + 7. It is
suggested to the reader to play around with Figure 5 for clarity. By the periodicity of xn we
can assume without loss of generality that the northmost-eastern corner of F (xn, z) lies in
the rectangle

{(i, j) : −4n− 4 ≤ i ≤ 4n+ 3, 0 ≤ j ≤ 3}.
Set the northmost-eastern corner of F (xn, z) as (i0, j0); we will use the fact repeatedly in

the following that if (i, j) is such that either i > i0 or j > j0 then xn(i,j) = z(i,j). A useful
9
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Figure 5. The homomorphism x1 is obtained by periodically tiling the Z2-lattice
with the top pattern (the pattern on the right and the upper edge are the same as
ones on the left and the lower edge). The homomorphism y1 is obtained from x1

by changing it only on one rectangular box of dimensions 1× 15 as indicated in the
right pattern. The circled coordinate is the origin.

property which falls out of Property 1 is the following: Suppose z(i0,j0) = xn(i0+1,j0+1). Since
there is a unique vertex adjacent to xn(i0+1,j0+1) and xn(i0−1,j0+1), it follows that z(i0−1,j0) =
xn(i0,j0+1). By induction is follows that z(i0−k,j0) = xn(i0−k+1,j0+1) for all k ∈ N proving that

F (xn, z) is infinite. We call this the forcing property.
The proof now breaks up into many cases.

Case (1): Suppose (i0, j0) is such that xn(i0,j0+1), x
n
(i0+1,j0) 6= M1. Then by Property 2, it

follows that z(i0,j0) = xn(i0+1,j0+1). By the forcing property we are done.

Case (2): Suppose (i0, j0) is such that xn(i0,j0+1) = M1, that is, (i0, j0) = (−4n − 4, 1) or

(−4n− 4, 3). The two possibilities can be similarly treated; assume that (i0, j0) =
(−4n−4, 1). There are two further possibilities: Either z(−4n−4,1) = xn(−4n−3,2) = I1
or z(−4n−4,1) = I3. The former case leads to the conclusion via the forcing property.
For the latter case, we need another step. Now z(−4n−5,1) is adjacent to both
z(−4n−4,1) = I3 and z(−4n−5,2) = R1 and hence is equal to M1 = xn(−4n−4,2). Thus
this case also leads to the conclusion via arguments very similar to the forcing
property.
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Case (3): Suppose (i0, j0) is such that xn(i0+1,j0) = M1, that is, (i0, j0) = (4n + 3, 0) or

(4n+ 3, 2). Again since the two possibilities can be similarly treated assume that
(i0, j0) = (4n + 3, 0). By the use of the forcing property we can assume that
z(4n+4−k,0) 6= xn(4n+5−k,1) for all k ∈ N. By Property 3 it follows that z(4n+3,0) = R3.
Inductively arguing it follows that z(i,0) = yn(i,0) 6= xn(i,0) for all −4n−3 ≤ i ≤ 4n+3.

Thus diam(F (xn, z)) ≥ 8n+ 7 and the proof is complete.

The following questions remain to be answered:
Question: Are there efficient ways to sample a random graph homomorphism Hom(B,H)
for a box B even when the space of graph homomorphism Hom(Z2,H) does not have the
generalised pivot property?
Question: Is it decidable whether a hom-shift has the pivot property/generalised pivot
property?
Question: Suppose Hom(Z2,H) does not have the generalised pivot property. Does this
imply that dim(Md

H) =∞?
A related construction can be found in [7, Section 9].

0.4. Pivot property for the Sturmians. The main result (Proposition 0.2) in this section
came out of discussions with Ville Salo. Another such example was constructed by Ville [16]
when the question had been initially asked in [10, Section 9]. Let us begin with some basic
definitions.

Fix an irrational number α and let T := [0, 1) in the one-dimensional torus (with addition
modulo one). Consider the map φ : T −→ {0, 1}Z given by

(φ(x))i := (1[1−α,1)(x+ iα)) for all i ∈ Z
where 1 is the indicator function. The Sturmian shift for the angle α is given by

Xα := φ(T) ⊂ {0, 1}Z.
For a shift space X ⊂ AZ let the homoclinic relation for X be given by

∆X := {(x, y) : x, y ∈ X and they differ at most on finitely many sites}.
We can now define the generalised pivot property for shift spaces X as we did for hom-

shifts: X has the generalised pivot property if there exists n such that for all (x, y) ∈ ∆X

there exists a sequence y(0) = x, y(1), . . . , y(k) = x ∈ X such that y(i), y(i+1) differ at most on
some interval of length n.

Related (but it is not clear whether either implies the other) is the notion of language
connectedness (a similar notion goes by the name Hamming connectedness [14]). Let

Lr(X) := {x|[1,r] : x ∈ X}.
We say that X is language-connected if there exists n ∈ N such that for all r ∈ N and
a, b ∈ Lr(X) there exists a sequence a = a(1), a(2), . . . , a(k) = b ∈ Lr(X) such that a(i), a(i+1)

differ at most on an interval of length n.
A weaker property is to require that a(i), a(i+1) differ at most on n sites instead. It was asked

by Mike Hochman [10, Section 9] whether there exists minimal, non-mixing shift spaces with
this weaker property. The answer is an affirmative. The question arose while trying to build
topologically rigid minimal model for a ergodic aperiodic rigid probability preserving system.
Look at [8, 10] for more details. While the larger question still remains to be answered, we
provide this simple example (minimal non-mixing subshift which is language-connected).
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Proposition 0.2. For all irrational angles α we have that the Sturmian shift Xα is language-
connected.

Remark 0.3. One can prove quite easily in this case that the Sturmian shifts have the
generalised pivot property as well. Further, the proof extends to the symbolic codings (by
intervals) of minimal interval exchange transformations (look at [11] for definitions). To
avoid unnecessary notational hassles we shall restrict our attention to the Sturmian shifts.

Proof. Let I0 := [0, 1−α) and I1 := [1−α, 1). It follows from the definition of the Sturmian
shifts that

Lr(Xα) = {a ∈ {0, 1}r :
⋂

1≤i≤r

(Iai − iα) 6= ∅}.

The sets
{
⋂

1≤i≤r

(Iai − iα) : a ∈ Lr(Xα)}

partition T into intervals; ennumerate it as

{[ck, ck+1) : 0 ≤ k ≤ r}
where

0 = c0 < c1 < · · · < cr+1 = 1.

Correspondingly enumerate the elements of Lr(Xα) as a(0), a(1), . . . , a(r) such that

[ck, ck+1) =
⋂

1≤i≤r

(I
a
(k)
i
− iα).

We will prove that a(k), a(k+1) differ at most on two adjacent sites.

If a
(k)
i = 0, a

(k+1)
i = 1 then

ck+1 = −α− iα.
If a

(k)
i = 1, a

(k+1)
i = 0 then

ck+1 = −iα.
Thus we have three possible cases:

(1) (ck+1 = −iα for some 2 ≤ i ≤ r): Here a
(k)
i = 1, a

(k+1)
i = 0, a

(k)
i−1 = 0, a

(k+1)
i−1 = 1 and

a
(k)
j = a

(k+1)
j for j 6= i− 1, i.

(2) (ck+1 = −α): Here a
(k)
1 = 1 and a

(k+1)
1 = 0 and a

(k)
j = a

(k+1)
j for j 6= 1.

(3) (ck+1 = −(r + 1)α): Here a
(k)
r = 0 and a

(k+1)
r = 1 and a

(k)
j = a

(k+1)
j for j 6= r.

This completes the proof. �
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