
A TILING PROBLEM
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Abstract. In this essay, we will discuss some results in R.M. Robinson’s paper
“Undecidability and Nonperiodicity for Tilings of the Plane” .

1. Introduction

Suppose we are given a finite set of square tiles with coloured edges and unit
length sides. Any tile mentioned in the essay will be of this type. A tiling of the
plane is defined as a covering of the plane with infinite copies of the given tiles.
The plane here refers to R2. The rules of tiling are that the edges of the tiles must
be either horizontal or vertical and abutting edges must have the same colour. We
are not allowed to rotate or reflect the tiles, only translation is allowed. The tiling
problem is, whether or not we can tile the plane with a given set of tiles. The ques-
tion was initially raised by Hao Wang in [Wang]. Let us understand his motivation.

Hao Wang was interested in analysing mathematical statements using predicate
calculus. More specifically he wanted to understand provability and satisfiability of
a given formula in predicate calculus. By the undecidability of the halting problem
it is clear that there cannot exist a finite procedure for this decision problem. So
he wished to study certain classes of formulas to say whether or not there exists a
finite procedure for those formulas. One such class considered are the formulas with
simple quantifier prefix AEA. In [Wang] he proved that the problem of deciding this
class is the same as deciding the tiling problem mentioned above. He conjectured :

“A finite set of plates is solvable(has at least one solution) if and only if there
exists a cyclic rectangle of plates, or, in other words a finite set of plates is solvable
if and only if it has atl east one periodic solution ”

Plates are the tiles, solvability refers to the existence of a tiling of the plane by a
given set of tiles and periodic solutions refer to tilings which are invariant under a
certain non-zero horizontal and vertical shift. Suppose that the conjecture is true.
Then we can prove that the tiling problem is decidable.

Suppose we are given a finite set of tiles a1, a2, a3 . . . an. The set can tile the
plane if and only if it can tile every finite rectangle with integral dimensions. That
is, it cannot tile the plane if and only if there exists a rectangle of size M ×N for
some M,N > 1 such that it cannot be tiled by the set. By the conjecture, the set
can tile the plane if and only if there exists a periodic tiling or equivalently there
exists a tiling of rectangle of size M1 × N1 for some M1, N1 > 1 such that the
first row is the same as the last row and the first column is the same as the last
column. The machine taking the decision starts listing out all possible tilings of
finite rectangles one by one. It has to eventually reach a rectangle of size greater
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than 2 × 2 which cannot be tiled or the first row equals the last row and the first
column equals the last column. By checking each tiling of the rectangles for the
given two conditions that it lists out, the machine can check whether or not the
plane can be tiled. Hence the tiling problem will be decidable.
This conjecture was eventually disproved by his PhD student Robert Berger in
[Berger] and he also proved that the tiling problem is undecidable. Eventually the
solution was simplified and was published by Raphael M. Robinson in [Robinson].
Recently, there has been further simplification by Jarkko Kari in [Kari]. He further
proves that the decision problem regarding tiling the hyperbolic plane is also un-
decidable. This question was raised in [Robinson]. However the author is not very
familiar with this work.

The essay is organised in the following way. We will begin by stating some
things related to the result. Then we show an example of a set of tiles forcing non-
periodicity. The essay will end with the proof of the undecidability of the tiling
problem.

2. Some Things Related or Vaguely Related

We will first discuss how this helps us understand a certain physical phenomena
and then try to see how it is related to Symbolic Dynamics.

C.Radin mentions in [Radin] curious relations between aperiodic tiling and crys-
talline structures. There the tiles considered are not necessarily rectangular or
oriented along the axis. I will not discuss them since it will take us away from the
topic however the reader is encouraged to have a look at this paper.

Now we will look at it from the symbolic dynamics context. Suppose we name
the tiles 1, 2 . . . n. The colouring gives us adjacency rules on what symbol can lie
next to what. Notice that restricting that the centres lie on lattice points does
not change the tiling problem in anyway. So with this restriction, we can look at
every tiling as a map from Z2 to {1, 2, . . . n} with the restrictions on adjacency of
symbols decided by the colours of the corresponding tiles. The set of these maps
form nearest neighbours shifts of finite type in 2- dimensions and the correspon-
dence thus described is bijective. Nearest neighbour shifts of finite types are central
objects in Symbolic Dynamics. Thus asking the question whether or not a certain
set of tiles can tile the plane is same as asking whether or not the correspond-
ing shift of finite type is empty. By Berger’s Theorem(i.e. the tiling problem is
undecidable), non-emptiness of nearest neighbour shift of finite type is undecidable.

For contrast, we will look into 1 dimensional nearest neighbour shifts of finite
type.This corresponds to tilings of a unit strip given by {(x, y)|x ∈ R and − 1 ≤
y ≤ 1} in the same way as above. Formally, let A = {1, 2 . . . n} be a finite alphabet
and F ⊂ A2.

Define a shift XF = {x ∈ AZ : xixi+1 /∈ F for all i ∈ Z}

Suppose x ∈ XF . Since the alphabet is finite, there exists i < j such that xi = xj

where xr is the rth coordinate of x. Since the rules forbid only which symbols can
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be next to the other, this means that the sequence xi . . . xj can be repeated indef-
initely to the right and to the left. This shows a strip can be tiled if and only if
there exists a periodic tiling therefore proving Wang’s Conjecture for strips. Hence
there is a decision method for the tiling problem on strips. This argument can
be naturally extended to thicker strips. The proof actually proves far more than
Wang’s Conjecture. It tells us that every allowable block in the the shift belongs
to a periodic point. This is quite like the pumping lemma for testing whether a
language is regular.

This argument gives us a possible intuition behind Wang’s Conjecture. So what
goes wrong while tiling a plane? The reason is the boundary effect. One can argue
in the following way, although the rows can attain periodicity, the entries force
vertical restrictions which in turn come round and force aperiodicity.

Figure 1. Boundary effects

Initially, the author had got the impression that any set of tiles would allow
periodic tilings. However after trying to prove it for a long time, he was relieved to
find that there exists a set of tiles which force aperiodicity.

We end this section with the following quote by C. Radin in [Radin]. “As in the
movie of the title of this article there can be a significant advantage in considering
various points of view of a complicated phenomenon, and it is not surprising that
the further separated the worlds from which the views originate, the more useful is
the contrast.”

3. An Aperiodic Tiling

The following construction is mentioned in [Robinson]. We will start with cer-
tain parity markings which will force a certain periodic tiling of the plane. After
this we will superimpose some direction tiles on to these which force a certain tile
to occur only as vertices of a square. This shall force non-periodicity. We will not
mention any colours till maybe the end of the this section.

We start with Parity markings. i.e. tiles marked with elements of Z/2Z×Z/2Z.
The rules of tiling are, any tile (a, b) to the left of tile (c, d) satisfies a = c− 1 and
b = d and any tile (h, k) above (r, s) satisfies k = s+1 and h = r. All computations
are being made in Z/2Z.
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Figure 2. Tiling of a 3× 3 area

Now consider direction tiles. They are like network signals travelling in various
directions. The 5 basic direction tiles are:

Figure 3. The 5 Direction Tiles

These are rotated and reflected to give us 28 tiles. There will be 4 types of crosses
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Figure 4. The Crosses

and a lot of horizontal and vertical arms. The arms are those tiles which have an
arrow running through it with arrow tail on one edge and the arrow head on the
other. The vertical arms are those with the concerned arrows oriented vertically
and the horizontal arms are those which have the concerned arrows oriented hori-
zontally.

Figure 5. A Vertical Arm

Figure 6. A Horizontal Arm

The rules governing the tiling by these tiles are that the directions should match.
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In the sense, an arrow should meet the appropriate tail. For example,

Figure 7

is correct, however

Figure 8

is incorrect.

Notice, that if we have two facing crosses e.g. down-right and down left in the
same row, and no other crosses in between then the configuration has to look like

Figure 9

The (1,2) box would be forced to have two incoming arrows from the bottom.
Browsing through all the choices available, this would mean that the (1,2) box
would have a arrow-tail on its right edge.This would force the (2,2) to be a cross
since it would have to give atleast 1 arrow to the (1,2) box and atleast 1 arrow to
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the (2,1) box. This process would continue forcing every alternate box in the upper
row to be a cross with some orientation. Hence if there was some way of forcing
the cross to occur at every alternate position we would get the crosses to occur as
vertices of a square. This property is quite important.

All direction tiles will be superimposed with certain parity tiles and the rules of
adjacency will be the superimposition of the rules of the tiles being superimposed.
The crosses will be superimposed with (0,0) tile. The vertical arms will be com-
bined with the (0,1) tile and the horizontal arm will be superimposed with the (1,0)
tile. All the direction tiles will be superimposed with the (1,1) tile. This will force
crosses to occur at alternate positions in alternate rows. The total number of tiles
is 56.

Lemma 3.1. The tiles can tile the whole plane. However they can only tile it
aperiodically.

Proof. Firstly let us show that it can tile the whole plane. We will hide the parity
markings since in most cases it will be obvious.Suppose we are given the up-left tile
with the (0,0) marking. This would force a configuration of the type

Figure 10

Putting a left up cross in the centre would again force a configuration of the type
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Figure 11

In figures 10 and 11, the centres have to be crosses and once we decide upon the
orientation of the cross in the centre all the other boxes can be uniquely filled in by
arms. We can hence recursively construct a 2n−1 square for every n. Since we can
tile arbitrary regions of the plane, therefore we can tile the whole plane. By the
forcing itself, depending on the choices of the orientation of the central crosses one
can tile the quarter plane, the half plane or the full plane. Thus any tiling will be
either two half planes with a column/row of arrows in between, four quarter planes,
two quarter planes and a half plane or a whole plane tiling by the choices we make.
Now, we are left to prove that any tiling is non-periodic. In figure 11, the only cross
in the 4th row has to be the one in the centre. Similarly in our construction the
only cross in the middle row of the square of size 2n − 1 has to be the one in the
centre.Any tiling has to contain a cross. Any cross will eventually give us a square
of the above type. Hence any tiling of the plane by these squares is non-periodic.

We are yet to understand how this is related to coloured tiles that we mentioned
in the introduction. Let X = {x1, . . . x56} be a set of 56 tiles. Apply the same
adjacency rules on it as given for the 56 tiles above. Suppose xi can be placed left
to the tile xj . Then colour the right edge of xi and left edge of xj by the same
colour. If two tiles cannot be placed in this way, then the corresponding colours
must be different. To be precise let

H = {(i, j)|xi can be placed to the left of xj}

Then

H =
∪

(Ar ×Br)

for some partitions {Ar}, {Br} of {1, 2 . . . 56} Therefore we can colour the right
edges of xi and left edges of xj by the colour r for all (i, j) ∈ Ar × Br for all r.

8



Colour the upper and the lower edges similarly. This colouring gives the required
adjacency rules. �

4. Proof of the Berger’s Theorem

The way this proof will proceed is the following. We will first find a way of
embedding any given turing machine in the tilings given in the previous section.
This embedding will give rise to a different set of tiles for every turing machine
and the question whether the tiles can tile the whole plane will be the same as the
question whether the corresponding turing machine does not halt beginning on an
empty tape. Hence if there is a turing machine which decides whether or not a given
set of tiles can tile a plane, it also decides the halting problem. Since the halting
problem is undecidable, this would prove that the tiling problem is undecidable and
hence prove Berger’s Theorem.

Theorem. The Tiling problem is undecidable.

Proof. We will begin with 56 tiles constructed in the beginning of the earlier sec-
tion. We will begin by colouring certain double arrows. There are three types of
tiles in consideration:
1)Crosses
2)Tiles which are not crosses but have double arrows in both directions and
3)Tiles which which have double arrows in only one direction.
Make another copy of the crosses superimposed on (1,1) and colour the double ar-
rows red.
Make another copy of tiles of type 2. Colour the horizontal double arrows on the
first copy and the vertical double arrows on the second copy red.
Make another copy of tiles of type 3. Colour the double arrows red.
This will force a tiling like:

Figure 12
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The crosses superimposed on (0,0) are forced to be black. This along with the
colouring in the type 2 crosses forces this kind of a pattern to emerge. In our con-
struction described in the earlier section, every alternate sized box will be coloured
red. There will be larger and larger ‘red-edged squares’ and two red-edged squares
will either contain one another or not intersect at all. The entire plane can be tiled
with these tiles.

The size of a red edged box will be 2n + 1 where n is even. A typical red edged
square will look like:

Figure 13
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One way of thinking of this, is once inside a red-edged square the tiles forget
that there is anything outside and arrange among themselves in the most natural
way. Once we are given a big red-edged square, if we forget about the colouring
there is a unique way to fill the inside part modulo the middle row and column.
We start with a Down-Right Cross on the upper right corner. This forces a 3 × 3
box. Since we cannot turn back this forces a Down-Right Cross of red colour in
the centre of this box. This in-turn forms a 7-box of red colour as in Figure-11 and
so on. Ultimately we are left with a choice for the orientation of the central cross
which is black. This also implies that the a 22r + 1 red-edged square occurs with a
period of 22r+1 in a bigger red-edged square

The turing machine will work along unobstructed rows and columns running
from the inner edge to the opposite inner edge of a red-edged square. Call these
rows and columns, working rows and working columns. The other rows and columns
will be called carrier row and carrier columns. For example, the number of working
rows in Figure 10 are 9. So as to make sure that the turing machine can work as
long as it wants, we need to make sure that the number of such rows and columns
keeps on increasing with the size of the box. Let the number of working columns
and rows in a 22k + 1 red-edged square be Fk.

Lemma 4.1. Fk = 2k + 1 for all k ∈ N.

Proof. F1 = 3 can be checked by mere inspection. Let us assume that this is true
for some k ∈ N. We will prove it for k+1.Let us look at a red-edged square of size
22k+2 + 1. By arguments above,there will be 4 red-edged squares of size 22k + 1
inside such a square. The 22k−1 upper left block of the 22k+2 + 1 square is the
same as the 22k−1 upper left block of the 22k + 1 square.This is because we are
forced to make the same choices for the orientation of crosses in these portions. By
vertical periodicity of squares, we get that the number of working columns in these
portions is Fk−1

2 . By repeating this on the left and right sides of the upper two

squares of size 22k+1 and the middle working column we get that the total number

of working columns is 4 (Fk−1)
2 +1. By assumption that Fk = 2k+1, we can deduce

that Fk+1 = 2k+1 + 1. Therefore, we are done. �

Till now there is no natural way to decide whether or not the rows and columns
are carriers or not. That is, if we were somewhere in a middle of a tiling we would
not know whether or not we are in a carrier row or not. We will only be concerned
with the portion in a red-edged square which is outside any other red-edged square
inside it.

For every tile with a red arrow marking attach a direction symbol on the edges
not abutting another red tile. These will be given by D for being on the lower edge,
U for being on the upper edge, R for being on the right edge and L for being on
the left edge of a red edged square. For example,
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Figure 14

Make more copies of the tiles with the black arrows and give them markings D,
U, R and L on appropriate positions. Opposite edges must have the same markings,
and unlike the tiles with red-arrows it can be marked DU on the upper and lower
sides and LR on both left and right sides. The adjacency rules are that adjacent
tiles with black arrows must have the same direction symbols on abutting edges.
When meeting an outer edge of a tile with red arrows the direction symbol on the
red tile should also be present on the black tile . When meeting an inner edge of
a red tile then the symbol should exactly match or must have no symbol on them
at all.Thus with this convention it is clear that these direction symbols will force a
situation like:
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We have thus managed to distinguish between carrier tiles and working tiles.
Now we are ready to introduce the turing machine into our system. Take any
turing machine as defined in Chapter 3 of [Sipser]. Basically it is a turing machine
with a one-sided tape who’s head has to move at every step to the one tile to the
left or to the right.
Take an arbitrary turing machine T = (Q,Σ,Γ, δ, qo, qaccept, qreject) where Q, Σ and
Γ are all finite sets and

(1) Q is the set of states,
(2) Σ is the input alphabet not containing the special blank symbol ⊔,
(3) Γis the tape alphabet, where {⊔} ∈ Γ and Σ ⊂ Γ,
(4) δ : Q× Γ −→ Q× Γ× {L,R} is the transition function,
(5) qo ∈ Q is the start state,
(6) qaccept ∈ Q is the accept state, and
(7) qreject ∈ Q is the reject state where qreject ̸= qaccept

The form of the halting problem that we shall use is the following.
The language consisting of turing machine encodings which do not halt on an empty
input is undecidable.
The turing machine tiles will be the following:

Figure 15

where q ∈ Q is a state, s ∈ Γ is an alphabet and δ(q, s) = (p, r, L) then we have the
first transition tile, and δ(q, s) = (p, r,R) if we have the second one. The beginning
configuration is given by the tiles:

Figure 16. Starting Tiles

The adjacency rules among the tiles is that the arrows and the signs on the arrow
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heads should match. A portion of the tiling corresponding to a turing machine
which keeps on writing 0s and 1s alternately while alternating between states q0
and q1 is given by:

Figure 17

Now superimpose these tiles with the tiles we already had. The alphabet tiles, the
merging tiles and the action tiles need to be superimposed on the tiles with black
arrows without any direction symbols that carrier tiles have. The lower row 2nd
left most red tile in a red-edged square receives a signal from the up-right red cross
and will be superimposed the first starting tiles. All other lower edge tiles on a
red-edged square except the left-up cross and those adjacent to tiles with D mark-
ings are superimposed with the 2nd starting tile. The carrier tiles carry the turing
machine signals unchanged horizontally and vertically depending on the direction
symbol that they have. Tiles with coloured edges as required can be obtained as
in the last section.

Now for every turing machine we have a set of finite tiles. These tiles can tile the
plane if and only if the corresponding turing machine does not halt on the blank
tape.

Now suppose we are given a finite set of tiles. It is easy to decide whether or not
the tiles are an encoding of a turing machine. Therefore if one can decide whether
or not the tiles can tile the whole plane, one will be able to conclude whether or
not a turing machine halts starting on a blank tape. Since the latter is undecidable
we have that the former is too. Hence Berger’s Theorem is proved. �

A careful study of the proof gives us that the completion problem is also unde-
cidable. That is given a beginning tiling whether the whole plane can be tiled or not.
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