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Abstract

The well-known Hammersley-Clifford Theorem states (under certain conditions) that any Markov

random field is a Gibbs state for a nearest neighbour interaction. Following Petersen and Schmidt

we utilise the formalism of cocycles for the homoclinic relation and introduce “Markov cocycles”,

reparametrisations of Markov specifications. We exploit this formalism to deduce the conclusion

of the Hammersley-Clifford Theorem for a family of Markov random fields which are outside the

theorem’s purview (including Markov random fields whose support is the d-dimensional “3-colored

chessboard”). On the other extreme, we construct a family of shift-invariant Markov random fields

which are not given by any finite range shift-invariant interaction.

The techniques that we use for this problem are further expanded upon to obtain the following

results: Given a “four-cycle free” finite undirected graph H without self-loops, consider the corre-

sponding ‘vertex’ shift, Hom(Zd,H) denoted by XH. We prove that XH has the pivot property,

meaning that for all distinct configurations x, y ∈ XH which differ only at finitely many sites there

is a sequence of configurations (x = x1), x2, . . . , (xn = y) ∈ XH for which the successive configu-

rations (xi, xi+1) differ exactly at a single site. Further if H is connected then we prove that XH

is entropy minimal, meaning that every shift space strictly contained in XH has strictly smaller

entropy. The proofs of these seemingly disparate statements are related by the use of the ‘lifts’ of

the configurations in XH to their universal cover and the introduction of ‘height functions’ in this

context.

Further we generalise the Hammersley-Clifford theorem with an added condition that the un-

derlying graph is bipartite. Taking inspiration from Brightwell and Winkler we introduce a notion

of folding for configuration spaces called strong config-folding to prove that if all Markov random

fields supported on X are Gibbs with some nearest neighbour interaction so are Markov random

fields supported on the “strong config-folds” and “strong config-unfolds” of X.
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Preface

This thesis is a combination of three manuscripts: [13], [10] and [11].

The broad direction of study was suggested by Prof. Brian Marcus. Chapter 2 is based on

the manuscript [13] and is joint with Dr. Tom Meyerovitch. Given the nature of this work, it is

impossible to separate the individual contributions for this chapter. Chapter 3 is based on the

manuscript [11]. Chapter 4 is based on the manuscript [10].
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Chapter 1

Introduction

This thesis can be divided broadly into two areas of study: identifying conditions on the support of

Markov random fields such that they are Gibbs for some nearest neighbour interaction and proving

that a certain class of shift spaces is entropy minimal. In the introduction we will briefly discuss

the results obtained in these areas (highlighted as theorems) during the course of my PhD and their

interrelations. Further details and formal definitions can be found in the subsequent chapters.

G = (V, E) will always refer to a locally finite countable undirected graph without multiple edges

and self-loops, H will always refer to an undirected graph without multiple edges. By Hom(G,H)

we will denote the space of graph homomorphisms from G to H. Let ~0 denote the origin and ~ei

denote the ith coordinate vector of Zd.

1.1 Markov Random Fields and Gibbs States

The boundary (or the external vertex boundary) of a set of vertices F ⊂ V, denoted by ∂F , is the

set of vertices outside F which are adjacent to F :

∂F := {v ∈ V \ F | ∃w ∈ F s.t. (v, w) ∈ E} .

Given a finite set A, the space AV is a compact topological space with respect to the product

topology, where the topology on A is discrete. For F ⊂ V finite and a ∈ AF , we denote by [a]F the

cylinder set

[a]F :=
{
x ∈ AV | x|F = a

}
.

For x ∈ AV we use the notation [x]F for [x|F ]F . The collection of cylinder sets generates the Borel

σ-algebra on AV .

A Markov random field (MRF) is a Borel probability measure µ on AV with the property that

for all finite A,B ⊂ V such that ∂A ⊂ B ⊂ Ac (as illustrated in Figure 1.1) and a ∈ AA, b ∈ AB

1



−Elements of A

−Elements of B

−Elements of the

boundary of A

Figure 1.1: A, ∂A and B

satisfying µ([b]B) > 0

µ
(

[a]A

∣∣∣ [b]B

)
= µ

(
[a]A

∣∣∣ [b|∂A]∂A

)
.

Given an MRF µ the space of conditional probabilities or the “specification” is the system of

conditional probabilities of the type µ([·]A
∣∣ [x]∂A) for all finite sets A ⊂ V and x ∈ supp(µ). In

general infinitely many parameters may be required to describe a specification even if the graph G
is Zd and the measure is shift-invariant.

A closed configuration space is a closed subsetX ⊂ AV . In most casesX will be the (topological)

support of some MRF µ denoted by supp(µ). Let us consider some examples:

1. r-colourings of G: Let Kr denote the complete graph (without self-loops) with vertices

1, 2, . . . r. Then X = Hom(G,Kr) denotes the set of all r-colourings of G.

2. Homomorphisms to the n-cycle: Let d ≥ 2 and Cn denote the n-cycle with vertices 0, 1, 2, . . . , n−
1. Then X = Hom(Z2, Cn) will form an important class of closed configuration spaces for

this thesis.

If G = Z2, r = 3 and n = 2 then Hom(G,Kr) and Hom(G, Cn) is also known as the “3-coloured

chessboard”. Given a graph H and d ∈ N, let Xd
H = Hom(Zd,H).

For all W ⊂ V let

LW (X) := {w ∈ AW | there exists x ∈ X such that x|W = w}.

The language of X ⊂ AV denoted by L(X) is defined as all finite patterns which occur in the

elements of X:

L(X) :=
⋃

W⊂V finite

LW (X).

A finite range interaction is a function φ : L(X) −→ R such that for some r ∈ N, φ(a) = 0

for all a ∈ LA(X) whenever diam(A) > r. A nearest neighbour interaction on X is a finite-range

interaction where r = 2. When G = Zd, an interaction φ is shift-invariant if for all ~n ∈ Zd and

a ∈ L(X), φ(a) = φ(σ~n(a)). Since the standard Cayley graph of Zd has no triangles, a shift-

invariant nearest neighbour interaction is uniquely determined by its values on patterns on {~0}

2



(“single site potentials”) and on patterns on pairs {~0, ~ei} where i = 1, . . . , d (“edge interactions”).

A Gibbs state with a nearest neighbour interaction φ is an MRF µ such that for all x ∈ supp(µ)

and A,B ⊂ V finite satisfying ∂A ⊂ B ⊂ Ac,

µ
(

[x]A

∣∣∣ [x]B

)
=

∏
C⊂A∪∂A

eφ(x|C)

ZA,x|∂A

where ZA,x|∂A is the uniquely determined normalising factor so that µ(X
∣∣∣ [x]∂A) = 1 for all

x ∈ supp(µ).

Some examples:

1. (Ising Model) Fix some J,E ∈ R and let X = {1,−1}Zd
and φ be a shift-invariant nearest

neighbour interaction φ given by

φ([m,n]~0,~ei) = Jmn

φ([m]~0) = Em

for all m,n ∈ {−1, 1} and 1 ≤ i ≤ d. The Ising model with “interaction” J and external field

E is a Gibbs state supported on X with interaction φ.

2. (Hard Square Model) Fix some λ ∈ R. The hard square model is the set X ⊂ {0, 1}Zd

which consists of configurations such that adjacent symbols cannot both be 1. Let φ be an

interaction on X such that

φ([0, 0]~0,~ei) = φ([0, 1]~0,~ei) = φ([1, 0]~0,~ei) = 0

φ([0]~0) = 0 and φ([1]~0) = λ

for all 1 ≤ i ≤ d. If µ is a Gibbs state supported on X with the shift-invariant nearest

neighbour interaction φ then the specification takes a particularly nice form: For all x ∈ X
we get

µ
(

[x]A

∣∣∣ [x]B

)
=

∏
C⊂A∪∂A

eφ(x|C)

ZA,x|∂A

=
eλ(number of ones in x|A∪∂A)

ZA,x|∂A

where ZA,x|∂A is the normalising factor.

3



0 1

Figure 1.2: The Graph for the Hard Square Model

Note that the hard square model is Xd
H where H is the graph given by Figure 1.2.

If G = Zd we the specification of a Gibbs state with some shift-invariant nearest neighbour

interaction is completely determined by the interaction and therefore by finitely many parameters.

We want to address the question: Under what conditions on the support is every Markov random

field a Gibbs measure for some nearest neighbour interaction?

The well-known Hammersley-Clifford theorem (Theorem 2.2.2) [3, 9, 23, 24, 54] gives one such

condition, a positivity assumption on the MRF given by the presence of a safe symbol in the support

which we explain next:

A closed configuration space X ⊂ AV is said to have a safe symbol ? ∈ A if for all A ⊂ V and

x ∈ X the configuration y given by

yn =

xn if n ∈ A

? if n /∈ A

is an element of X.

It is not hard to see that a space of configurations Xd
H has a safe symbol ? if and only if ? is

adjacent to all the vertices of H. For instance the symbol 0 is a safe symbol for the hard square

model but Xd
Kr

and Xd
Cn

do not have a safe symbol for r ≥ 2 and n ≥ 1. The Hammersley-Clifford

theorem does not apply to Markov random fields whose support is Xd
Kr

or Xd
Cn

.

We will prove:

Theorem 1.1.1. [13] Let n 6= 1, 4 and d ≥ 2. If the support of a shift-invariant MRF is Xd
Cn

then

it is a Gibbs state for some shift-invariant nearest neighbour interaction.

On the other hand,

Theorem 1.1.2. [13] For G = Z2, there exists a shift-invariant MRF which is not Gibbs for any

shift-invariant finite range interaction.

It was proved in [9, 12] that if the underlying graph G = Z, then every shift-invariant MRF is a

Gibbs state for some shift-invariant nearest neighbour interaction. Previously the same conclusion

was obtained under certain mixing conditions with a more general alphabet (Theorems 10.25 and

10.35 in [22]); however there are MRFs which are not Gibbs states for any nearest neighbour

interaction: when the alphabet is countable (Theorem 10.33 in [22]) and when the measure is not

shift-invariant [16]. When G is finite, such MRFs were constructed in [34]. On the other hand,

4
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Figure 1.3: A Dismantlable Graph

there are algebraic conditions on the support [21] and conditions on the graph [28] which guarantee

the conclusions of the Hammersley-Clifford Theorem.

MRFs and Gibbs States with nearest neighbour interactions will be defined in Subsection 2.1.1

and Subsection 2.1.4. The proof of Theorems 1.1.1 and 1.1.2 will be given in Sections 2.5 and 2.8

respectively.

1.2 A Generalisation of the Hammersley-Clifford Theorem for
Bipartite Graphs

In the following v ∼H w denotes that (v, w) is an edge in H. Also H will denote both the graph

and its set of vertices.

The following notions were introduced in [37] to classify cop-win graphs: Given a graph H, we

say that a vertex v ∈ H folds to w ∈ H if u ∼H v implies that u ∼H w. A graph H\{v} is called a

fold of H. A graph H is called dismantlable if there exists a sequence of folds H,H1, . . . ,Hn such

that Hn is a single vertex (with or without a loop).

For instance if n 6= 4 and H = Cn then i ∼Cn i+ 1, i− 1(mod n) for all 0 ≤ i ≤ n− 1 proving

that Cn cannot be folded. We had remarked that for a graph H, Xd
H has a safe symbol ? if and

only if ? ∼H v for all v ∈ H. Thus all vertices in such a graph H can be folded to ? and so H is

dismantlable. In particular, 0 is a safe symbol for the graph H in Figure 1.2. However there are

many examples of dismantlable graphs H for which Xd
H does not have a safe symbol; for example,

the graph H in Figure 1.3 can be folded to a single vertex by the sequence: s folds to t, v folds

to w, u folds to w and t folds to w. Thus H is dismantlable but there is no vertex in H which is

adjacent to all its other vertices; Xd
H does not have a safe symbol.

We will prove:

Theorem 1.2.1. [11] Let G be a bipartite graph and let H be a dismantlable graph. Then any

Markov random field on Hom(G,H) is a Gibbs state for some nearest neighbour interaction. Further

if G = Zd and the Markov random field is shift-invariant then the corresponding interaction can be

chosen to be shift-invariant as well.

In fact we prove a more general result for configuration spaces which cannot be represented

as the space of graph homomorphisms, generalising the Hammersley-Clifford theorem when the
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underlying graph G is bipartite. The details are part of Chapter 3 and for the statement of results

in this direction look at Theorems 3.3.1, 3.3.2 and Corollary 3.3.8.

1.3 Pivot Property

For the study of Markov random fields we introduce the following combinatorial property on closed

configuration spaces:

A closed configuration space X is said to have the pivot property if for all (x, y) ∈ ∆X with

x 6= y there exists a finite sequence x(1) = x, x(2), . . . , x(k) = y ∈ X such that each (x(i), x(i+1))

differ exactly at a single site.

The pivot property is useful to study Markov random fields for the following reason: Let

G = Zd. If µ is a shift-invariant Markov random field such that supp(µ) has the pivot property

then for all x, y ∈ supp(µ) which differ at finitely many sites there exists a finite sequence x(1) =

x, x(2), . . . , x(k) = y ∈ X such that each (x(i), x(i+1)) differ exactly at a single site ~ni ∈ Zd. Let F

be a set of sites such that x|F c = y|F c and ~ni ∈ F for all i. Then

µ([x]F | [x]∂F )

µ([y]F | [y]∂F )
=

k−1∏
i=1

µ([x(i)]F
∣∣ [x(i)]∂F )

µ([x(i+1)]F
∣∣ [x(i+1)]∂F )

=
k−1∏
i=1

µ([x(i)]~ni

∣∣ [x(i)]∂{~ni})

µ([x(i+1)]~ni

∣∣ [x(i+1)]∂{~ni})
.

Since µ is shift-invariant these equations imply that the entire space of conditional probabilities

is completely determined by finitely many parameters, viz., µ([x]~0 | [x]∂{~0}) for x ∈ supp(µ).

Examples of Configuration Spaces with the Pivot Property:

1. Any closed configuration space with a safe symbol.

2. Xd
Kr

if r ≥ 2d+ 2 (Proposition 2.2.5) or r = 3 (Proposition 2.3.4).

3. Xd
H if H is a dismantlable graph [6].

On the other hand it is not true that all homomorphism spaces have the pivot property: It was

observed by Brian Marcus that X2
K4

and X2
K5

do not have the pivot property. We will show that

X2
K4

does not have the pivot property in Subsection 5.2.4.

We will prove:

Theorem 1.3.1. [13] Let n 6= 1, 4 and d ≥ 2. Then Xd
Cn

has the pivot property.

Theorem 1.3.1 will be further generalised: A finite graph H is said to be four-cycle free if it has

no self-loops and C4 is not a subgraph of H.

We will prove:
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Theorem 1.3.2. [10] Let d ≥ 2. For all four-cycle free graphs H, Xd
H has the pivot property.

The pivot property will be defined and further examples will be given in Section 2.2.2. Theorems

1.3.1 and 1.3.2 will be restated as Proposition 2.3.4 and Theorem 4.1.4 respectively.

1.4 Entropy Minimality

While the proof of Theorem 1.2.1 is more combinatorial in nature the proof of Theorem 1.1.1 rests

on some ergodic theory considerations which we will now touch upon:

Fix d ≥ 2 and let Bn = [−n, n]d ∩ Zd. A shift space is a closed configuration space X ⊂ AZd

which is shift-invariant. If X = Xd
H for some H then X is called a hom-shift. The topological

entropy of a shift space X is

htop(X) := lim
n−→∞

1

|Bn|
log |LBn(X)|.

It measures the growth rate of the number of allowed patterns in X. It is easy to see that if

Y ( X then htop(Y ) ≤ htop(X). As in [14] a shift space X is called entropy minimal if for any shift

space Y ( X, htop(Y ) < htop(X); In other words, exclusion of any pattern in X causes a drop in

its entropy.

There has been much work trying to establish some relationship between “mixing conditions”

on the shift space and entropy minimality: For d = 1, all irreducible shifts of finite type are entropy

minimal (Theorem 4.4.7 in [29]). Not much is known for higher dimensions; it is known that some

strong mixing conditions like uniform filling imply entropy minimality [51] but weaker conditions

like corner gluing do not [4]. There has been some recent work [52] which gives a condition equivalent

to entropy minimality for shifts of finite type.

Our results in Chapter 2 imply that Xd
Cn

is entropy minimal for n 6= 4:

For proving this we will use the associated ‘height functions’: A height function is a function

h : Zd −→ Z such that for adjacent vertices ~i,~j ∈ Zd, |h(~i) − h(~j)| = 1. Let Htd denote the set

of height function on Zd. We will prove that the map h ∈ Htd −→ h mod n ∈ Xd
Cn

is surjective

when n 6= 4 (for the case when n = 3, also look at [48]) and that given any ergodic MRF µ (with

some technical assumptions) on Xd
Cn

by the ergodic theorem there exists a notion of slope (average

rate of increase of height) for every direction; if the slope is maximal in some direction then the

support of µ is frozen, otherwise it is fully supported. From this, standard results in thermodynamic

formalism (the Lanford-Ruelle Theorem [47]) imply that Xd
Cn

is entropy minimal. Have a look at

Proposition 2.6.1 and Lemma 2.7.2.

These ideas will be further extended to prove:

Theorem 1.4.1. [10] Let H be a four-cycle free connected graph. Then Xd
H is entropy minimal.

In the following, by the neighbourhood of a vertex v ∈ H we will mean the set of all vertices

adjacent to v. As in algebraic topology, there is a notion of covering spaces for graphs: C is a

7



covering space of H if there is a graph homomorphism (called the covering map) f : C −→ H
such that for every vertex v ∈ H the preimage of the neighbourhood N of v in H is a disjoint

union of a constant number of neighbourhoods in C isomorphic to N via f . Given a graph H, its

universal cover (denoted by EH) is the unique covering space which is a tree (Look for instance in

[1]). Denote the corresponding covering map by π.

For example, the universal cover of Cn is Z and the corresponding graph homomorphism π :

Z −→ Cn is the map π(r) = r mod n. On the other hand the universal cover of a tree is itself.

It is easy to see that for the induced map on Xd
EH

(also denoted by π) we have π(Xd
EH

) ⊂ Xd
H;

we will prove in Proposition 4.4.2 that the map is surjective. Also the preimage of a configuration

in Xd
H is unique if we fix the lift at a single vertex. Associate to every configuration x ∈ XH a

configuration x̃ ∈ Xd
EH

such that π(x̃) = x. We can thus associate to the space Xd
H the generalised

height function hH : Xd
H × Zd −→ N ∪ {0} such that hH(x,~i) is the graph distance between x̃~0

and x̃~i. From here on, the steps for proving Theorem 1.4.1 are similar to those used in the proof

of Proposition 2.6.1 but the proofs obtained for the individual steps in the latter are somewhat

different. For instance now the existence of a slope for any ergodic measure on Xd
H in every direction

will follow from the subadditive ergodic theorem instead of the ergodic theorem. The reason is that

unlike height functions introduced earlier, hH is not additive but is subadditive, meaning

hH(x,~i+~j) ≤ hH(x,~i) + hH(σ
~i(x),~j).

Topological entropy will be defined in Section 2.7. A description of height functions will be

given in Section 2.3 and that of the universal covers and generalised height functions will be given

in Sections 4.4 and 4.5. A brief description of the tools from thermodynamic formalism will be

given in Sections 2.7 and 4.2 respectively. Theorem 1.4.1 will be the same as Theorem 4.1.2.
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Chapter 2

Markov Random Fields, Markov

Cocycles and the 3-Coloured

Chessboard

The main results of this chapter are Theorems 1.1.1 and 1.1.2. The results in this chapter are joint

with Tom Meyerovitch [13].

2.1 Background and Notation

This section will recall the necessary concepts and introduce the basic notation.

2.1.1 Markov Random Fields and Topological Markov Fields

Let G = (V, E) be a simple, undirected graph where the vertex set V is finite or countable. We

always assume that G is locally finite, meaning all v ∈ V have a finite number of neighbours. The

boundary of a set of vertices F ⊂ V, denoted by ∂F , is the set of vertices outside F which are

adjacent to F :

∂F := {v ∈ V \ F | ∃w ∈ F s.t. (v, w) ∈ E} .

Remark: Observe that in our notation ∂F ⊂ F c. This is sometimes called the outer boundary

of the set F . Consistent with our notation the inner boundary of F is ∂(F c).

Given a finite set A, the space AV is a compact topological space with respect to the product

topology, where the topology on A is discrete. For F ⊂ V finite and a ∈ AF , we denote by [a]F the

cylinder set

[a]F :=
{
x ∈ AV | x|F = a

}
.

For x ∈ AV we use the notation [x]F for [x|F ]F . The collection of cylinder sets generates the Borel

σ-algebra on AV .
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A Markov random field is a Borel probability measure µ on AV with the property that for all

finite A,B ⊂ V such that ∂A ⊂ B ⊂ Ac and a ∈ AA, b ∈ AB satisfying µ([b]B) > 0

µ
(

[a]A

∣∣∣ [b]B

)
= µ

(
[a]A

∣∣∣ [b|∂A]∂A

)
.

We say that the sets of vertices A,B ⊂ V are separated (in the graph G) if they are disjoint and

(v, w) 6∈ E whenever v ∈ A and w ∈ B.

Here is an equivalent definition of a Markov random field: If x is a point chosen randomly

according to the measure µ, and A,B ⊂ V are finite and separated, then conditioned on x|V\(A∪B),

x|A and x|B are independent random variables.

A Markov random field is called global if the conditional independence above holds for all

separated sets A,B ⊂ V (finite or not) .

As in [9, 12], a topological Markov field is a compact set X ⊂ AV such that for all finite F ⊂ V
and x, y ∈ X satisfying x|∂F = y|∂F , there exist z ∈ X satisfying

zv :=

xv for v ∈ F

yv for v ∈ V \ F.

A topological Markov field is called global if we do not demand that F be finite.

The support of a Borel probability measure µ on AV denoted by supp(µ) is the intersection of

all closed sets Y ⊂ AV for which µ(Y ) = 1. Equivalently,

supp(µ) = AV \
⋃

[a]A∈N (µ)

[a]A,

where N (µ) is the collection of all cylinder sets [a]A with µ([a]A) = 0. The support of a Markov

random field is a topological Markov field (see Lemma 2.0.1 in [9]).

2.1.2 The Homoclinic Equivalence Relation of a Topological Markov Field and
Adapted MRFs.

Following [42, 49], we denote by ∆X the asymptotic relation of a topological Markov field X ⊂ AV ,

which is given by

∆X := {(x, y) ∈ X ×X | xn = yn for all but finitely many n ∈ V}. (2.1.1)

Given a shift space X the homoclinic relation is defined to be the same as the asymptotic

relation on X. We say that an MRF µ is adapted with respect to a topological Markov field X if

supp(µ) ⊂ X and

x ∈ supp(µ) =⇒ {y ∈ X | (x, y) ∈ ∆X} ⊂ supp(µ).
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It follows that an MRF µ is adapted with respect to a TMF X if and only if all continuous

functions f : X −→ X satisfying (x, f(x)) ∈ ∆X for all x ∈ X are absolutely continuous with

respect to µ. In this case µ is said to be non-singular with respect to ∆X and it is possible to

patch up all the Radon-Nikodym derivatives df(µ)
dµ for all f as described above: The Radon-Nikodym

cocycle of µ is a map cµ : ∆X −→ R+ such that for all functions f described above

cµ(x, f(x)) =
df(µ)

d µ
(x) µ-almost everywhere.

If µ is an MRF then the Radon-Nikodym derivative takes a particularly nice form: If (x, y) ∈
∆supp(µ) and a finite set F ⊂ V such that x|F c = y|F c then

cµ(x, y) =
µ([y]F∪∂F )

µ([x]F∪∂F )
.

Since µ is a Markov random field the right hand side is independent of the choice of F . See [33]

and references within for further details.

To illustrate adaptedness, if supp(µ) = X then µ is adapted with respect to X, and if X =

X1 ∪ X2 is the union of two topological Markov fields over disjoint alphabets and µ is a Markov

random field with supp(µ) = X1 then µ is adapted with respect to X. On the other hand, the

Bernoulli measure (1
2δ0 + 1

2δ1)V is not adapted with respect to {0, 1, 2}V . In fact, if X = AV for

some finite alphabet A then any Markov random field which is adapted to X has supp(µ) = X.

2.1.3 Zd-Shift Spaces and Shifts of Finite Type

For the Markov random fields we discuss in this chapter, the set of vertices of the underlying graph

is the d-dimensional integer lattice. We identify Zd with the set of vertices of the Cayley graph

with respect to the standard generators. Rephrasing, ~n, ~m ∈ Zd are adjacent iff ‖~n − ~m‖1 = 1,

where for all ~n = (n1, . . . , nd) ∈ Zd, ||~n||1 :=
∑d

r=1 |nr| denotes the l1 norm of ~n. The boundary of

a given finite set F ⊂ Zd is thus given by:

∂F = {~m ∈ F c | ||~n− ~m||1 = 1 for some ~n ∈ F} .

On the compact space AZd
(with the product topology over the discrete set A) the maps

σ~n : AZd → AZd
given by

(σ~n(x))~m := x~m+~n for all ~m,~n ∈ Zd

define a Zd-action by homeomorphisms, called the shift-action. The pair (AZd
, σ) is a topological

dynamical system called the d-dimensional full shift on the alphabet A. Note that σ acts on the

Cayley graph of Zd by graph isomorphisms.

A Zd-shift space or subshift is a dynamical system (X,σ) where X ⊂ AZd
is closed and invariant
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under the map σ~n for each ~n ∈ Zd.
A Borel probability measure µ on AZd

is shift-invariant if µ ◦ σ~n = µ for all ~n ∈ Zd. It follows

that the support of all shift-invariant measures µ is a subshift.

For X ⊂ AV and W ⊂ V let

LW (X) := {w ∈ AW | there exists x ∈ X such that x|W = w}.

The language of X ⊂ AV denoted by L(X) is defined as all finite patterns which occur in the

elements of X:

L(X) :=
⋃

W⊂V finite

LW (X).

If A,B ⊂ V and x ∈ AA, y ∈ AB such that x|A∩B = y|A∩B then x ∨ y ∈ AA∪B is given by

(x ∨ y)n :=

xn n ∈ A

yn n ∈ B.

An alternative equivalent definition for a subshift is given by forbidden patterns as follows: Let

A? :=
⋃

W⊂Zd finite

AW .

For all F ⊂ A? let

XF = {x ∈ AZd | no translate of a subconfiguration of x belongs to F}.

It is well-known that a subset X ⊂ AZd
is a subshift if and only if there exists F ⊂ A? such that

X = XF (for d = 1 this is stated in [29] as Theorem 6.1.21; the proof for higher dimensions is

similar). The set F is called the set of forbidden patterns for X. A subshift X is called a shift

of finite type if X = XF for some finite set F . A shift of finite type is called a nearest neighbour

shift of finite type if X = XF where F consists of nearest neighbour constraints, i.e. F consists

of patterns on single edges. When d = 1 nearest neighbour shifts of finite type are also called

topological Markov chains. In fact the study of nearest neighbour shifts of finite type has been

partly motivated by the fact that the support of stationary Markov chains are one-dimensional

nearest neighbour shifts of finite type.

Every nearest neighbour Zd-shift of finite type is a shift-invariant topological Markov field.

When d = 1 the converse is also true under the assumption that the subshift is non-wandering [12].

Without the non-wandering assumption, one-dimensional shift-invariant topological Markov fields

are still so-called sofic shifts, but not necessarily of finite type [12]. This does not hold in higher

dimensions ([9] and Section 2.8).
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2.1.4 Gibbs States with Nearest Neighbour Interactions

For a graph G = (V, E) and A ⊂ V, let diam(A) denote the diameter of A with respect to the graph

distance (denoted by dG) in G, that is, diam(A) = maxi,j∈A d(i, j).

Following [47], an interaction on X is a function φ from L(X) to R, satisfying certain summa-

bility conditions. Here we will only consider finite range interactions, for which the summability

conditions are automatically satisfied.

An interaction is of range at most k if φ(a) = 0 for a ∈ LA(X) whenever diam(A) > k. We will

call an interaction of range 1 a nearest neighbour interaction. When G = Zd, an interaction φ is

shift-invariant if for all ~n ∈ Zd and a ∈ L(X), φ(a) = φ(σ~n(a)). Since the standard Cayley graph

of Zd has no triangles, a shift-invariant nearest neighbour interaction is uniquely determined by its

values on patterns on {~0} (“single site potentials”) and on patterns on pairs {~0, ~ei}, i = 1, . . . , d

(“edge interactions”). We denote these by φ([a]0) and φ([a, b]i) respectively where a, b ∈ A.

A Gibbs state with a nearest neighbour interaction φ is a Markov random field µ such that for

all x ∈ supp(µ) and A,B ⊂ V finite satisfying ∂A ⊂ B ⊂ Ac,

µ
(

[x]A

∣∣∣ [x]B

)
=

∏
C⊂A∪∂A

eφ(x|C)

ZA,x|∂A

where ZA,x|∂A is the uniquely determined normalising factor so that µ(X
∣∣∣ [x]∂A) = 1 for all

x ∈ supp(µ).

2.1.5 Invariant Spaces, Measures and Interactions

An automorphism of the graph G = (V, E) is a bijection on the vertex set g : V −→ V which

preserves the adjacencies, that is, (u, v) ∈ E if and only if (gu, gv) ∈ E . Let the group of all

automorphisms of the graph G be denoted by Aut(G).

There is a natural action of Aut(G) on patterns and configurations: given a ∈ AF , x ∈ AV and

g ∈ Aut(G) we have ga ∈ AgF and gx ∈ AV given by

(ga)gv := av and

(gx)v := xg−1v.

This induces an action on measures on the space AV given by

(gµ)(L) := µ(g−1L)

for all measurable sets L ⊂ AV .

For a given subgroup G ⊂ Aut(G), a set of configurations X ⊂ AV is said to be G-invariant if
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gX = X for all automorphisms g ∈ G. Similarly a measure µ on AV is said to be G-invariant if

gµ = µ for all g ∈ G. Note, for any subgroup G ⊂ Aut(G), if µ is a G-invariant probability measure

then supp(µ) is also a G-invariant configuration space. For G = Zd we abuse notation to denote

the group of translations by Zd as well. In this notation σ~n(x) = (−~n)(x).

Let X ⊂ AV be a closed configuration space invariant under a subgroup G ⊂ Aut(G). Then G

acts on the interactions on X: Given an interaction φ on X for all a ∈ AF and g ∈ G

gφ([a]F ) := φ([g−1a]g−1F ).

2.2 Markov Specifications and Markov Cocycles

Any Markov random field µ yields conditional probabilities of the form µ(xF = · | x∂F = δ)

for all finite F ⊂ V and admissible δ ∈ A∂F (by admissible we mean µ([δ]∂F ) > 0). We refer

to such a collection of conditional probabilities as the Markov specification associated with µ. It

may happen that two distinct Markov random fields have the same specification, as in the case of

the 2-dimensional Ising model in low temperature [38]. In general it is a subtle and challenging

problem to determine if a given Markov specification admits more than one Markov random field

(the problem of uniqueness for the measure of maximal entropy of a Zd-shift of finite type is an

instance of this problem [7]). For the purpose of our study and statement of our results, it would

be convenient to have an intrinsic definition for a Markov specification, not involving a particular

underlying Markov random field.

Let X ⊂ AV be a topological Markov field. A Markov specification on X is an assignment

for each finite and non-empty F ⊂ V and x ∈ L∂F (X) of a probability measure ΘF,x on LF (X)

satisfying the following conditions:

1. Support condition: For all finite and non-empty F ⊂ V, x ∈ L∂F (X) and y ∈ LF (X),

x ∨ y ∈ LF∪∂F (X) if and only if ΘF,x(y) > 0. This condition can be written as follows:

supp(ΘF,x) = {y ∈ LF (X) | x ∨ y ∈ LF∪∂F (X)}.

2. Markovian condition: For all finite and non-empty F ⊂ V and x ∈ L∂F (X), ΘF,x is a

Markov random field on the finite graph induced from V on F .

3. Consistency condition: If F ⊂ H ⊂ V are finite and non-empty, x ∈ L∂F (X), y ∈ L∂H(X)

and xn = yn for n ∈ ∂F ∩ ∂H, then for all z ∈ LF (X)

ΘF,x(z) =
ΘH,y([z ∨ x](F∪∂F )∩H)

ΘH,y([x]∂F∩H)
.

The definition above has been set up so that for any Markov random field µ with X = supp(µ),
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the assignment

(F, x) 7→ ΘF,x(a) := µ([a]F | [x]∂F )

is a Markov specification. Conversely, given any Markov specification Θ on X there exists a

Markov random field µ on X compatible with Θ in the sense that µ([a]F | [y]∂F ) = ΘF,y(a) for all

a ∈ LF (X) whenever µ([y]∂F ) > 0 (Chapter 4 in [22]). Furthermore, when X ⊂ AZd
is a subshift

and the specification Θ is shift-invariant, it follows from amenability of Zd that there exists a

shift-invariant Markov random field µ compatible with Θ. However, in general it is possible that

for a given specification Θ the support of any µ satisfying the above is a strict subset of X, in

which case there exist certain finite F ⊂ V and y ∈ L∂F (X) for which the conditional probabilities

µ([x]F | [y]∂F ) are meaningless for all x ∈ X. We will provide such examples in Section 2.5. In such

a case, according to our definition, the Markov specification associated with µ is the restriction of

Θ to the support of µ, meaning the collection of conditional probabilities ΘF,x for finite sets F ⊂ V
and x ∈ L∂F (supp(µ)).

It will be convenient for our purposes to re-parameterize the set of Markov specifications on a

given topological Markov field X. For this purpose we use the formalism of ∆X -cocycles. To this

well-known formalism we introduce an ad-hoc definition of a Markov cocycle, which we will explain

now. As in [49], a (real-valued) ∆X-cocycle is a function M : ∆X −→ R satisfying

M(x, z) = M(x, y) +M(y, z) whenever (x, y), (y, z) ∈ ∆X . (2.2.1)

Given G ⊂ Aut(G), M is a G-invariant ∆X -cocycle if M(x, y) = M(g(x), g(y)) for all g ∈ G. If

G = Zd then Zd-invariant ∆X -cocycles are said to be shift-invariant. We call M a Markov cocycle

if it is a ∆X -cocycle and satisfies: For all (x, y) ∈ ∆X such that x|F c = y|F c the value M(x, y) is

determined by x|F∪∂F and y|F∪∂F .

There is a clear bijection between Markov cocycles and Markov specifications on X: If Θ is a

Markov specification on X, the corresponding Markov cocycle is given by

M(x, y) := log
(
ΘF,y|∂F (y|F )

)
− log

(
ΘF,x|∂F (x|F )

)
,

where (x, y) ∈ ∆X and F ⊂ V finite such that x|F c = y|F c . Clearly M does not depend on the

choice of F : Let F̃ is the set of sites on which x and y differ then

M(x, y) := log
(
ΘF,y|∂F (y|F )

)
− log

(
ΘF,x|∂F (x|F )

)
= log

(
ΘF,y|∂F ([y]F̃

∣∣∣ [y]F\F̃ )
)
− log

(
ΘF,x|∂F ([x]F

∣∣∣ [x]F\F̃ )
)

(Markovian condition) = log
(

ΘF,y|∂F ([y]F̃

∣∣∣ [y]∂F̃∩F )
)
− log

(
ΘF,x|∂F ([x]F

∣∣∣ [x]∂F̃∩F )
)

(Consistency condition) = log
(

ΘF,y|∂F̃ (y|F̃ )
)
− log

(
ΘF̃ ,x|∂F̃

(x|F̃ )
)
.
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Conversely, given a Markov cocycle M on X, the corresponding specification Θ is given by

ΘF,a(y) =
1

ZM,F,a,z
eM(x∨z,x∨y),

where F ⊂ V is a finite set, a ∈ L∂F (X), y, z ∈ LF (X) are such that a ∨ y, a ∨ z ∈ LF∪∂F (X) and

x ∈ LF c(X) with x|∂F = a. The normalising constant ZM,F,a,z is given by:

ZM,F,a,z =
∑
y′

eM(x∨z,x∨y′),

where the sum is over all y′ ∈ LF (X) such that y′ ∨ a ∈ LF∪∂F (X). Note that the expression for

the specification is well defined: Since M is a Markov cocycle on the topological Markov field X the

right-hand side does not depend on the particular choice of x. The choice of the auxiliary variable

z on the right-hand side changes the normalising constant ZM,F,a,z, but does not change ΘF,a.

When X ⊂ AV is G-invariant, this bijection maps G-invariant specifications to G-invariant

Markov cocycles. Thus, a G-invariant Borel probability measure µ is a G-invariant Markov random

field if and only if X = supp(µ) is a topological Markov field and the Radon-Nikodym cocycle of µ

with respect to ∆X is some G-invariant Markov cocycle M , that is, for all (x, y) ∈ ∆X

µ([y]Λ)

µ([x]Λ)
= eM(x,y)

for all Λ ⊃ F ∪ ∂F where F is the set of sites on which x, y differ.

Fix a topological Markov field X and a nearest neighbour interaction φ on X. The Gibbs cocycle

corresponding to φ is given by:

Mφ(x, y) =
∑

W⊂V finite

φ(y|W )− φ(x|W ).

Note that when φ is a nearest neighbour interaction, there are only finitely many non-zero terms

in the sum whenever (x, y) ∈ ∆X and so Mφ is well defined. Examination of the definitions verifies

that under the above assumptions Mφ is a Markov cocycle. Our point of interest is the converse:

When can a Markov cocycle be expressed in this form?

Proposition 2.2.1. Let µ be an MRF and M be a Markov cocycle on supp(µ) given by

M(x, y) = log

(
µ([y]Λ)

µ([x]Λ)

)
for all (x, y) ∈ ∆supp(µ)

for any Λ ⊃ F ∪ ∂F where F is the set of vertices where x and y differ. Then µ is a Gibbs state

with a nearest neighbour interaction φ if and only if M = Mφ.

The proof of the proposition follows because µ is a Gibbs state with a nearest neighbour inter-
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action φ if and only if

M(x, y) = log

(
µ ([y]F | [y]∂F )

µ ([x]F | [y]∂F )

)
=

∑
W⊂V finite

φ(y|W )− φ(x|W ) = Mφ(x, y)

for all x, y ∈ ∆supp(µ). Let X be a topological Markov field. Denote by MX the set of all Markov

cocycles and by GX the set of all nearest neighbour Gibbs cocycles. In case X is G-invariant,

we denote by MG
X the set of G-invariant Markov cocycles and by GG

X the set of Gibbs cocycles

corresponding to a G-invariant nearest neighbour interaction.

The set MX of Markov cocycles naturally carries a vector space structure: Given M1,M2 ∈MX

and c1, c2 ∈ R, c1M1 + c2M2 ∈ MX . The reader can easily verify that GX is a linear subspace

of MX . If X is a shift-space then the shift-invariant nearest neighbour interactions constitute

a finite-dimensional vector space, and the map sending a nearest neighbour interaction φ to the

cocycle Mφ is linear, it follows that GZd

X ⊂MX has finite dimension.

For a topological Markov fieldX defined over a finite graph G = (V, E),MX is finite dimensional;

the problem of determining which Markov cocycles are Gibbs amounts to solving a finite (but

possibly large) system of linear equations. The resulting equations are essentially the ‘balanced

conditions’ mentioned in [34].

2.2.1 The “Safe Symbol Property” and the Hammersley-Clifford Theorem

A topological Markov field X ⊂ AZd
is said to have a safe symbol if there exists an element ? ∈ A

such that for all x ∈ X and A ⊂ Zd, y ∈ AZd
given by

yn :=

xn for n ∈ A

? for n ∈ Ac

is also an element of X.

A formulation of the Hammersley-Clifford Theorem states:

Theorem 2.2.2. (Hammersley-Clifford, weak version [24]) Let X be a topological Markov

field with a safe symbol. Then:

1. Any Markov random field with supp(µ) = X is a Gibbs state for a nearest neighbour interac-

tion.

2. If X is G-invariant for some G ⊂ Aut(G) then any G-invariant Markov random field with

supp(µ) = X is a Gibbs state for some G-invariant nearest neighbour interaction.

The second statement in the theorem above is not a part of the original formulation, but does

follow since there is an explicit algorithm to produce a nearest neighbour interaction which is

invariant under all graph automorphisms for which the original Markov random field was invariant

17



[9]. See also [2, 54, 55]. It is in general false that a G-invariant Markov random field whose

(G-invariant) specification is compatible with some nearest neighbour interaction must also be

compatible with some G-invariant nearest neighbour interaction (see Corollary 2.4.6 below). In

particular, for a general topological Markov field X we have GG
X ⊂ MG

X ∩GX , but the inclusion

may be strict.

An inspection of the original proof of the Hammersley-Clifford Theorem actually gives the

following a priori stronger result:

Theorem 2.2.3. (Hammersley-Clifford Theorem, strong version) Let X be a topological

Markov field with a safe symbol. Then:

1. Any Markov cocycle on X is a Gibbs cocycle given by a nearest neighbour interaction. In our

notation this is expressed by: MX = GX .

2. Given G ⊂ Aut(G), if X is G-invariant then any G-invariant Markov cocycle on X is a Gibbs

cocycle given by a G-invariant nearest neighbour interaction. In our notation this is expressed

by: MG
X = GG

X .

It is easily verified that any topological Markov field X which satisfies one of the conclusions

of the “strong version” immediately satisfies the corresponding conclusion of the “weak version”.

We will demonstrate in the following section that the converse implication is false in general. The

proof of the first part of this version follows from Theorem 2.2.2 with the additional knowledge

that given a Markov cocycle on a topological Markov field X with a safe symbol there exists a

corresponding MRF µ such that supp(µ) = X. This in turn is implied by arguments very similar

to those in the proof of the following proposition. The second part of the theorem can be proved

using Theorem 2.0.6 in [9], noting that the conclusion holds even if the MRF is not invariant under

G but the corresponding Markov cocycle is.

Proposition 2.2.4. Let X be a topological Markov field with a safe symbol. Then any Markov

random field µ adapted to X has supp(µ) = X.

Proof. Let µ be a Markov random field adapted to X. We need to show that for all finite F ⊂ V
and a ∈ LF (X), µ([a]F ) > 0. Denote F ∪ ∂F by F̃ . Let b ∈ LF̃ (X) and c ∈ L∂F̃ (X) satisfy

µ([b ∨ c]F̃∪∂F̃ ) > 0. In particular, µ([c]∂F̃ ) > 0. Let b̃ ∈ LF̃ (X) be given by

b̃n :=

bn n ∈ F

? n ∈ ∂F.

Note that b̃ ∨ c ∈ LF̃∪∂F̃ (X) because ? is a safe-symbol. Again, by the safe symbol property it

follows that ã ∈ LF̃ (X) where:

ãn :=

an n ∈ F

? n ∈ ∂F.
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Since X is a topological Markov field, ã ∨ c ∈ LF̃∪∂F̃ (X). Since µ is an adapted Markov random

field it follows that µ([ã]F̃ | [c]∂F̃ ) > 0, and since µ([c]∂F̃ ) > 0 it follows that µ([ã ∨ c]F̃∪∂F̃ ) > 0; in

particular we get that µ([a]F ) > 0.

Remark: Proposition 2.2.4 is a particular instance of the more general fact that all ∆X -

nonsingular measures µ satisfy supp(µ) = X, whenever ∆X is a topologically minimal. The latter

condition means that for any x ∈ X, the ∆X -orbit ∆X(x) := {y ∈ X | (x, y) ∈ ∆X} is dense in X.

Remark: When the underlying graph is Zd, any shift-invariant topological Markov field X

with a safe symbol is actually a nearest-neighbour shift of finite type; Proposition 3.1.2 proves a

more general fact.

2.2.2 The Pivot Property

We shall now consider a weaker property than that of having a safe symbol. Let X be a topological

Markov field. If x, y ∈ X only differ at a single v ∈ V, then the pair (x, y) will be called a pivot

move in X. A topological Markov field X is said to have the pivot property if for all (x, y) ∈ ∆X

such that x 6= y there exists a finite sequence of points x(1) = x, x(2), . . . , x(k) = y ∈ X such that

each (x(i), x(i+1)) is a pivot move. In this case we say x(1) = x, x(2), . . . , x(k) = y is a chain of pivots

from x to y. Many properties similar to the pivot property have appeared in the literature (often

by the name local-move connectedness), for instance look at [6, 36, 39, 53] Here are some examples

of subshifts which have the pivot property:

1. Any topological Markov field with a trivial homoclinic relation.

2. Any topological Markov field with a safe symbol.

3. The r-colourings of Zd (defined below) where r = 3 (generalised in Proposition 2.3.4 and

Theorem 4.1.4) or r ≥ 2d+ 2 (Proposition 2.2.5).

4. The space of graph homomorphisms from Zd to a “dismantlable graph”, as in [6] (defined in

the examples after the statement of Theorem 3.3.2).

Consider a countable graph G = (V, E) without multiple edges and self-loops. Let Coln denote

the proper vertex colourings of G with n colours:

Coln :=
{
x ∈ {1, . . . , n}V | xv 6= xw whenever (v, w) ∈ E

}
.

The r-colourings of Zd is the space Colr when G is Zd. The fact that r-colourings of Zd with

r ≥ 2d+ 2 have the pivot property is a consequence of the following:

Proposition 2.2.5. Let G = (V, E) be a graph with all vertices of degree at most d and n ≥ d+ 2.

Then Coln is a topological Markov field that has the pivot property.
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Proof. Given x, y ∈ ∆Coln we will describe a sequence of pivot moves from x to y: Let F := {v ∈
V | xv 6= yv}. Let x(0) := x. For every i ∈ {1, . . . , n}, obtain a point x(i) ∈ Coln by pivots moves

starting from x(i−1) as follows:

• Step 1: For every v ∈ F such that x
(i−1)
v = i, choose j ∈ {1, . . . , n} such that

j 6∈
{
x(i−1)
v | v ∈ ∂{v} ∪ {v}

}
.

Such j exists because by our assumption on n: |∂{v} ∪ {v}| ≤ d+ 1 < n. In particular i 6= j.

Make a pivot move by changing x
(i−1)
v from i to j. After at most |F | pivot moves we obtain

the point z such that zv 6= i for all v ∈ F and zv = x
(i−1)
v unless v ∈ F and x

(i−1)
v = i.

• Step 2: For every v ∈ F such that yv = i apply a pivot move by changing zv to i:

x′w :=

zw if w 6= v

i if w = v.

To see that x′ ∈ Coln, we need to check that zw 6= i for any w ∈ ∂{v}. Indeed if w ∈ ∂{v}∩F
then zw 6= i by step 1. If w ∈ ∂{v} ∩ F c then zw = yw. Because yv = i it follows that yw 6= i.

Now iterate with z replaced by x′. After at most |F | pivot moves we obtain the point x(i).

This configuration has the property that x
(i)
v = yv unless v ∈ F and yv > i.

This describes a finite sequence of pivot moves from x = x(0) to x(n) = y.

Proposition 2.2.6. Let X ⊂ AZd
be a shift-invariant topological Markov field with the pivot

property. Then the dimension of MZd

X is finite.

Proof. Let (x, y) ∈ ∆X . Let x = x(1), x(2), x(3), . . . , x(k) = y be a chain of pivots from x to y. Then

M(x, y) =

k−1∑
i=1

M(x(i), x(i+1)). (2.2.2)

If x(i), x(i+1) differ only at ~mi ∈ Zd then M(x(i), x(i+1)) = M(σ−~mi
x(i), σ−~mi

x(i+1)) depends only on

σ−~mi
x(i)|{~0}∪∂{~0} and σ−~mi

x(i+1)|{~0}∪∂{~0}. Therefore the dimension of the space of shift-invariant

Markov cocycles is bounded by |L{~0}∪∂{~0}(X)|2.

2.3 Zr-Homomorphisms, 3-Coloured Chessboards and Height
Functions

Recall that a graph-homomorphism from the graph G1 = (V1, E1) to the graph G2 = (V2, E2) is a

function f : V1 → V2 from the vertex set of G1 to the vertex set of G2 such that f sends edges in
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G1 to edges in G2. Namely, if (v, w) ∈ E1 then (f(v), f(w)) ∈ E2. We consider Zd as the vertex set

of the standard Cayley graph, where an edge (~n, ~m) is present if and only if ‖~n− ~m‖1 = 1. Also a

subset A ⊂ Zd will also denote the induced subgraph of Zd on A.

For the purposes of this chapter, a height function on A ⊂ Zd is a graph homomorphism from A

to the standard Cayley graph of Z. We denote the set of height functions on A ⊂ Zd by Ht (d)(A):

Ht(d)(A) :=
{
x̂ ∈ ZA | |x̂~n − x̂~m| = 1 whenever ~n, ~m ∈ A and ‖~n− ~m‖1 = 1

}
. (2.3.1)

In particular, we denote

Ht(d) := Ht(d)(Zd)

We now introduce a certain family of Zd-shifts of finite type X
(d)
r , where r, d ∈ N, and r > 1:

Denote by Zr = Z/rZ ∼= {0, . . . , r−1} the finite cyclic group of residues modulo r. Let φr : Ht(d) →
(Zr)Z

d
be defined by

(φr(x̂))~n := x̂~n mod r for all ~n ∈ Zd.

The Zd-subshift X
(d)
r is defined by:

X(d)
r := φr(Ht

(d)).

For r = 2 it is easily verified that X
(d)
2 consists precisely of two points xeven, xodd. These are

“chessboard configurations”, given by xeven~n = ‖~n‖1 mod 2 and xodd~n = ‖~n‖1 + 1 mod 2.

In the following, to avoid cumbersome superscripts, we will fix some dimension d ≥ 2, and

denote Ht := Ht(d), Xr := X
(d)
r and Ht(A) := Ht(d)(A) for all A ⊂ Zd.

For r 6= 1, 4, there is a direct and simple interpretation for the subshift Xr as the set of

graph homomorphisms from the standard Cayley graph of Zd to the standard Cayley graph of Zr
(Proposition 2.3.1 below). In the particular case r = 3 the standard Cayley graph of Zr is the

complete graph on 3 vertices, and so X3 is the set of proper vertex-colourings of standard Cayley

graph of Zd with colours in {0, 1, 2}. This relation has certainly been noticed and recorded in the

literature. For instance, it is stated without proof in [20]. The general method of using height

functions is attributed to J.H.Conway [57]. For the sake of completeness, we bring a self-contained

proof in Proposition 2.3.1 and Lemma 2.3.2 below. The proofs below essentially follow [48, 50],

where the corresponding results are obtained for the case d = 2, r = 3. Also, many ideas going into

the proofs of Propostion 2.3.1, Lemma 2.3.2 and Lemma 2.3.3 come from algebraic topology; we

mention the connection briefly at the end of Section 4.4 (where we generalise some of these results).

Within the proof we also define a function grad : Xr × Zd → Z, which we use later on.

Proposition 2.3.1. For any d ≥ 2 and r ∈ N \ {1, 4}, Xr is a nearest neighbour shift of finite type

given by

Xr = {x ∈ (Zr)Z
d | x~n − x~m = ±1 mod r, whenever ‖~n− ~m‖1 = 1}.
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Proof. When r = 2, by our previous remark X2 = {xodd, xeven}; the proposition is easily verified

in this case. From now on assume r ∈ N \ {1, 2, 4}. Temporarily, let us denote

Yr := {x ∈ (Zr)Z
d | x~n − x~m = ±1 mod r, whenever ‖~n− ~m‖1 = 1}.

We need to establish that Yr = Xr.

For all x̂ ∈ Ht and ~m,~n ∈ Zd with ‖~n− ~m‖1 = 1, by definition of Ht, we have |x̂~n − x̂~m| = 1.

Thus, (φr(x̂))~n−(φr(x̂))~m = ±1 mod r, and so φr(x̂) ∈ Yr. This establishes the inclusion Xr ⊂ Yr.
To complete the proof, given x ∈ Yr we will exhibit x̂ ∈ Ht so that φr(x̂) = x. Choose ~n0 ∈ Zd

and define x̂~n0
:= x~n0

. For all ~n ∈ Zd, choose a path ~n0, ~n1 . . . , ~nk = n from ~n0 to ~n in the standard

Cayley graph of Zd, meaning, ~ni+1 − ~ni ∈ {±~e1, . . . ,±~ed}. Define

x̂~n := x̂~0 +

k∑
i=1

[x~ni
− x~ni−1

],

where for x ∈ Yr and ~m,~n ∈ Zd with ‖~m− ~n‖1 = 1,

[x~n − x~m] :=

1 if x~n − x~m = 1 mod r

−1 if x~n − x~m = −1 mod r
. (2.3.2)

We claim that for all x ∈ Yr the value of x̂~n thus obtained is independent of the path chosen

from ~n0 to ~n. Another way to express this is as follows:

For x ∈ Yr and ~n ∈ {±~e1, . . . ,±~ed} let

grad(x, n) := [x~n − x~0]. (2.3.3)

Extend grad to a map grad : Yr × Zd → Z as follows: For an arbitrary ~n ∈ Zd write ~n =
∑M

j=1 ~sj ,

with ~sj ∈ {±~e1, . . . ,±~ed}. Define:

grad(x, ~n) :=

M∑
k=1

grad(σ~nk−1x,~sk), (2.3.4)

where ~nk :=
∑k

j=1 ~sj and the expressions appearing in the sum on the right-hand side of (2.3.4) are

defined by (2.3.3). We will now verify that grad(x, ~n) is well defined, which means it does not depend

on the representation ~n =
∑M

j=1 ~sj . Specifically, we will check that for all ~t1, . . . ,~tN , ~s1, . . . , ~sk ∈
{±~e1, . . . ,±~ed} satisfying

∑N
i=1

~ti =
∑k

j=1 ~sj and x ∈ Yr

k∑
j=1

[x~nj
− x~nj−1

] =

N∑
j=1

[x~mj
− x~mj−1

], (2.3.5)
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where ~nj =
∑j

i=1 ~si and ~mj =
∑j

i=1
~ti.

From (2.3.2) it follows that [x~n − x~m] = −[x~m − x~n] whenever ‖~m − ~n‖1 = 1. Note that

~0, ~n1, ~n2, . . . , ~nk, ~mN−1, . . . , ~m1,~0 forms a loop in Zd. Since loops in Zd are generated by four-cycles

of the type ~0, ~ei, ~ei + ~ej , ~ej ,~0 for all 1 ≤ i, j ≤ d to check (2.3.5), it thus suffices to verify for all

x ∈ Yr:

[x~ej − x~0] + [x~ej+~ei − x~ej ] = [x~ei − x~0] + [x~ei+~ej − x~ei ]. (2.3.6)

From the definition (2.3.2), the equality in (2.3.6) holds modulo r. Also,

[x~ej − x~0], [x~ej+~ei − x~ej ], [x~ei − x~0], [x~ej+~ei − x~ei ] ∈ {±1}.

Thus (2.3.6) is a consequence of the following simple exercise:

For all A1, A2, A3, A4 ∈ {±1} satisfying

A1 +A2 +A3 +A4 = 0 mod r, where r ∈ N \ {1, 2, 4},

we have

A1 +A2 +A3 +A4 = 0.

It now follows that for all x ∈ Yr and n ∈ Zd

grad(x, ~n) = x̂~n − x̂~0. (2.3.7)

In particular it follows that for all ~n, ~m ∈ Zd with ‖~n − ~m‖1 = 1, x̂~m − x̂~n ∈ {±1}. So indeed

x̂ ∈ Ht. It is straightforward to check that φr(x̂) = x.

Remark: From the proof above we see that map grad : Xr × Zd → Z satisfies the following

relation:

grad(x, ~n+ ~m) = grad(x, ~n) + grad(σ~n(x), ~m). (2.3.8)

This means that grad is a cocycle for the shift-action on Xr. See [48, 50] for more on cocycles for

Xr and other subshifts.

In the particular case when r = 3 , X
(d)
3 is a presentation of a shift of finite type known as

the d-dimensional 3-coloured chessboard. The subshift X
(d)
3 is the set of proper vertex-colourings of

standard Cayley graph of Zd with colours in {0, 1, 2}. On the first reading of the following sections,

we advise the reader to keep in mind the case r = 3 and d = 2, in which X
(d)
r is the “2-dimensional

3-coloured chessboard”.

Remark: For the “exceptional” case r = 4, X4 is still a shift of finite type. This can be directly
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deduced from the following formula:

X
(d)
4 = {x ∈ (Zr)Z

d | x~n − x~m = ±1 mod 4, whenever ||~n− ~m||1 = 1

and [x~p − x~p+~ei ] + [x~p+~ei − x~p+~ei+~ej ] = [x~p − x~p+~ej ] + [x~p+~ej − x~p+~ei+~ei ]

for all 1 ≤ i, j ≤ d and ~p ∈ Zd}.

However X
(d)
4 is not a topological Markov field, as we now explain. For simplicity assume d = 2.

Let x, y ∈ X(2)
4 be the periodic points satisfying

y~n =

2∑
i=1

~ni mod 4 and x~n = 2−
2∑
i=1

~ni mod 4.

That is:

y =

...
...

...
... ...

... 1 2 3 ...

... 0 1 2 ...

... 3 0̄ 1 ...

... 2 3 0 ...

...
...

...
... ...

and x =

...
...

...
... ...

... 1 0 3 ...

... 2 1 0 ...

... 3 2̄ 1 ...

... 0 3 2 ...

...
...

...
... ...

(2.3.9)

Observe that x~0 = 2 and y~0 = 0 and x|∂{~0} = y|∂{~0}. However the configuration z given by

z~i =

x~0 if ~i = ~0

y~i otherwise

is not an element of X
(2)
4 because

[z−~e2 − z−~e2+~e1 ] + [z−~e2+~e1 − z~e1 ] = −2

while

[z−~e2 − z~0] + [z~0 − z~e1 ] = 2.

A similar construction works for any d > 2.

Lemma 2.3.2. Fix any d ≥ 2 and r ∈ N \ {1, 2, 4}. For x ∈ Xr any two pre-images under φr

differ by a constant integer multiple of r, that is, if x̂, ŷ ∈ Ht satisfy φr(x̂) = φr(ŷ) then there exists

M ∈ Z so that x̂~n − ŷ~n = rM for all ~n ∈ Zd.

Proof. Let x ∈ Xr, x̂, ŷ ∈ Ht satisfy φr(x̂) = φr(ŷ) = x. We have

x̂~0 ≡ ŷ~0 ≡ x~0 mod r.
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Thus there exists M ∈ Z so that x̂~0 − ŷ~0 = rM . By (2.3.7) it follows that for all n ∈ Zd

x̂~n − x̂~0 = ŷ~n − ŷ~0 = grad(x, ~n).

It follows that for all ~n ∈ Zd

x̂~n − ŷ~n = x̂~0 − ŷ~0 = rM.

Lemma 2.3.3. Let d ≥ 2 and r ∈ N \ {1, 2, 4}. Fix any (x, y) ∈ ∆Xr and a finite F ⊂ Zd so that

x~n = y~n for all ~n ∈ Zd \ F .

1. There exists a finite set F̃ so that for all x̂, ŷ ∈ Ht such that φr(x̂) = x and φr(ŷ) = y, there

exists M ∈ Z so that x̂~n − ŷ~n = rM for all ~n ∈ Zd \ F̃ .

2. We can choose x̂, ŷ ∈ Ht so that M = 0, that is, (x̂, ŷ) ∈ ∆Ht.

3. If (x̂′, ŷ′), (x̂, ŷ) ∈ ∆Ht and φr(x̂
′) = φr(x̂) = x, φr(ŷ

′) = φr(ŷ) = y then there exists M ∈ Z
so that for all ~n ∈ Zd, ŷ′~n = ŷ~n + rM and x̂′~n = x̂~n + rM .

4. For any (x̂, ŷ) ∈ ∆Ht and all ~n ∈ Zd, (x̂~n − ŷ~n) ∈ 2Z.

5. If x, y ∈ Xr satisfy x~n = y~n for all ~n ∈ Zd \ {~n0} and x~n0
6= y~n0

then there exists x̂, ŷ ∈ Ht
such that φr(x̂) = x, φr(ŷ) = y and

|x̂~n − ŷ~n| =

2 if ~n = ~n0

0 otherwise .

Proof. 1. Choose x̂ ∈ φ−1
r (x) and ŷ ∈ φ−1

r (y). Since the set F is finite, there is an infinite

connected component Ã ⊂ Zd \ F in the standard Cayley graph of Zd so that F̃ := Zd \ Ã is

finite. Fix some ~n0 ∈ Ã. For any ~n ∈ Ã choose a path ~n0, ~n1 . . . , ~nk = ~n ∈ Ã from ~n0 to ~n in

the standard Cayley graph of Zd, that is, ~nj+1 − ~nj ∈ {±~e1, . . . , ~ed} for all 1 ≤ j ≤ k− 1 and

xj = yj for all 1 ≤ j ≤ k. Using (2.3.3) and (2.3.4) we conclude that

grad(σ~n0(x), ~n− ~n0) = grad(σ~n0(y), ~n− ~n0).

It now follows using (2.3.7) that

x̂~n − x̂~n0
= ŷ~n − ŷ~n0

.

Because x~n0
= y~n0

, x̂~n0
− ŷ~n0

∈ rZ, and so there exists M ∈ Z so that x̂~n − ŷ~n = rM for all

~n ∈ Ã = Zd \ F̃ .
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2. Define ẑ by

ẑ~n := ŷ~n − (ŷ~n0
− x̂~n0

) for all ~n ∈ Zd.

Obviously ẑ ∈ Ht. Since x~n0
= y~n0

it follows that ŷ~n0
− x̂~n0

∈ rZ. Thus φr(ẑ) = φr(ŷ) = y.

Also ẑ~n = ŷ~n for all ~n ∈ Ã. Thus, (x̂, ẑ) ∈ ∆Ht, proving the second assertion.

3. By Lemma 2.3.2, for any choice of x̂′ ∈ φ−1
r (x) there exists M1 ∈ Z so that x̂′~n = x̂~n+rM1 for

all ~n ∈ Zd. Similarly, for any choice of ŷ′ ∈ φ−1
r (y) there exists M2 ∈ Z so that ŷ′~n = ŷ~n+ rM2

for all ~n ∈ Zd. But if (x̂′, ŷ′) ∈ ∆Ht it follows that M1 = M2. This proves the third assertion.

4. From (2.3.3) it follows that grad(x,±~ej) = 1 mod 2 for all x ∈ Xr and j ∈ {1, . . . , d}. Thus

by (2.3.4) the parity of grad(x, ~n) is equal to the parity of ‖~n‖1 and does not depend on x.

Therefore if x̂~n0
= ŷ~n0

for some ~n0 ∈ Zd, from (2.3.7) it follows that x̂~n − ŷ~n ∈ 2Z for all

~n ∈ Zd.

5. Suppose that x, y ∈ Xr satisfy x~n = y~n for all ~n ∈ Zd \ {~n0} and x~n0
6= y~n0

. Choose

(x̂, ŷ) ∈ ∆Ht so that φr(x̂) = x and φr(ŷ) = y. By the argument above x̂~n = ŷ~n for all ~n 6= ~n0.

Let ~m := ~n0 + ~e1. Since x~m = y~m and x~n0
6= y~n0

it follows that [x~n0
− x~m] 6= [y~n0

− y~m], thus

|[x~n0
− x~m]− [y~n0

− y~m]| = 2.

Using (2.3.3) and (2.3.7), we conclude that |x̂~n0
− ŷ~n0

| = 2.

It is a known and useful fact that the 3-coloured chessboard has the pivot property. This can

be shown, for instance, using height functions. Essentially the same argument shows that Xr has

the pivot property for all r ∈ N \ {1, 2, 4}. We include a short proof below. Similar arguments

appear in the proofs of certain claims in the subsequent sections.

Proposition 2.3.4. For any d ≥ 2 and r ∈ N \ {1, 2, 4} the subshift Xr has the pivot property. In

other words, given any (x, y) ∈ ∆Xr there exist x = z(0), z(1), . . . , z(N) = y ∈ Xr such that for all

0 ≤ k < N , there is a unique nk ∈ Zd for which z
(k)
nk 6= z

(k+1)
nk .

This will be further generalised as Theorem 4.1.4.

Proof. Fix (x, y) ∈ ∆Xr . By Lemma 2.3.3, we can choose (x̂, ŷ) ∈ ∆Ht with φr(x̂) = x and

φr(ŷ) = y. We will proceed by induction on D =
∑

~n∈Zd |x̂~n − ŷ~n|. Note that by Lemma 2.3.3 D

is well defined, that is, the differences (x̂~n − ŷ~n) in the sum do not depend on the choice of (x̂, ŷ).

When D = 0, then x = y and the claim is trivial. Now, suppose D > 0. Let

F+ = {~n ∈ Zd | (x̂~n − ŷ~n) > 0}

F− = {~n ∈ Zd | (x̂~n − ŷ~n) < 0},
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that is, F+ ⊂ Zd is the finite set of sites where x̂ is strictly above ŷ and F− ⊂ Zd is the finite set

of sites where ŷ is strictly above x̂. Without loss of generality assume that F+ is non-empty. Since

(x̂~n − ŷ~n) ∈ 2Z, x̂~n − ŷ~n ≥ 2 for all ~n ∈ F+. Consider ~n0 ∈ F+ such that x̂~n0
= max{x̂~n | ~n ∈ F+}.

It follows that x̂~n0
− x̂~m = 1 for all ~m neighbouring ~n0. We can thus define ẑ ∈ Ht which is equal

to x̂ everywhere except at ~n0, where ẑ~n0
= x̂~n0

− 2. Now set z(1) = φr(ẑ) and apply the induction

hypothesis on (z(1), y).

2.4 Markov Cocycles on Xr

Our goal in the current section is to describe the space of shift-invariant Markov cocycles on Xr,

when r ∈ N \ {1, 2, 4}, and the subspace of Gibbs cocycles for shift-invariant nearest neighbour

interactions.

In the following we assume r ∈ N \ {1, 2, 4} and d > 1, unless explicitly stated otherwise.

Lemma 2.4.1. Fix r ∈ N \ {1, 2, 4} and d > 1. Let F ⊂ Zd be a finite set and x, y, z, w ∈
Xr such that x|F c = y|F c, z|F c = w|F c and x|F∪∂F = z|F∪∂F , y|F∪∂F = w|F∪∂F . Consider

(x̂, ŷ), (ẑ, ŵ) ∈ ∆Ht such that they are mapped by φr to the pairs (x, y), (z, w) ∈ ∆Xr respectively.

Then x̂~n − ŷ~n = ẑ~n − ŵ~n for all ~n ∈ Zd.

Proof. Let F0 ⊂ Zd denote the infinite connected component of F c. For ~n ∈ F0, we clearly have

x̂~n − ŷ~n = ẑ~n − ŵ~n = 0. We can now prove by induction on the distance from ~n ∈ Zd to F0 that

x̂~n − ŷ~n = ẑ~n − ŵ~n. Given ~n ∈ Zd \ F0, find a neighbour ~m of ~n which is closer to F0. By the

induction hypothesis, x̂~m − ŷ~m = ẑ~m − ŵ~m.

If either ~n ∈ F or ~m ∈ F , then both ~m and ~n are in F ∪ ∂F and so x~n − x~m = z~n − z~m and

y~n − y~m = w~n − w~m. (2.3.2) and (2.3.7) imply x̂~n − x̂~m = ẑ~n − ẑ~m and ŷ~n − ŷ~m = ŵ~n − ŵ~m.

Subtracting the equations and applying the induction hypothesis, we conclude in this case that

x̂~n − ŷ~n = ẑ~n − ŵ~n.

Otherwise, ~n, ~m ∈ F c and so x~n − x~m = y~n − y~m and z~n − z~m = w~n −w~m, and again by (2.3.2)

and (2.3.7) we conclude that x̂~n − ŷ~n = ẑ~n − ŵ~n.

For i ∈ Zr and integers a, b with a− b ∈ 2Z, let

Ni(a, b) :=

|{m ∈ (2Z+ a) ∩ (rZ+ i) | m ∈ [a, b)}| if a ≤ b

−Ni(b, a) otherwise

Here Ni is the “net” number of crossings from (i+ rZ) to (i+ 2 + rZ) in a path going from a to b

in steps of magnitude 2. Note that

Ni(a, b) = Ni(a+ rn, b+ rn) (2.4.1)
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for all a, b, n ∈ Z and

Ni(a, b) = Ni(a+ c, b+ c) (2.4.2)

for all a, b, c ∈ Z such that a− b ∈ rZ ∩ 2Z .

Proposition 2.4.2. For any r ∈ N \ {1, 2, 4} and d > 1, the space MZd

Xr
of shift-invariant Markov

cocycles on Xr has a linear basis

{M0,M1, . . . ,Mr−1},

where the cocycle Mi is given by

Mi(x, y) :=
∑
n∈Zd

Ni(x̂n, ŷn); (2.4.3)

(x̂, ŷ) ∈ ∆Ht is any pair which is mapped to (x, y) by φr. In particular dim(MZd

Xr
) = r.

Proof. By Lemma 2.3.3 different choices (x̂, ŷ) ∈ ∆Ht which map to (x, y) via φr differ by a

fixed translation in rZ. Thus by (2.4.1) the values Mi(x, y) are independent of the choice of the

corresponding height functions (x̂, ŷ) ∈ ∆Ht and hence are well defined.

We will show that for i = 0, . . . , r − 1, Mi is indeed a Markov cocycle. Since Ni(a, c) =

Ni(a, b) + Ni(b, c) whenever a ≡ b ≡ c mod 2, it follows that Mi(x, z) = Mi(x, y) + Mi(y, z)

whenever x, y, z ∈ Xr are homoclinic. Thus Mi is a ∆Xr -cocycle. Clearly, Mi is shift-invariant.

We now check that Mi satisfies the Markov property. This is equivalent to showing that

Mi(x, y) = Mi(z, w) whenever x, y, z, w ∈ Xr satisfy the assumption in Lemma 2.4.1. In this

case by Lemma 2.4.1, x̂~n − ŷ~n = ẑ~n − ŵ~n for all ~n ∈ Zd. Also note that for any ~n ∈ Zd, either

x~n = z~n and y~n = w~n in which case x̂~n − ẑ~n = ŷ~n − ŵ~n ∈ rZ or x~n = y~n and z~n = w~n, in

which case by Lemma 2.3.3 x̂~n − ŷ~n = ẑ~n − ŵ~n ∈ rZ ∩ 2Z. By (2.4.1) and (2.4.2) in either case

Ni(x̂~n, ŷ~n) = Ni(ẑ~n, ŵ~n) and summing over the ~n’s, we get Mi(x, y) = Mi(z, w) as required.

To complete the proof we need to show that all shift-invariant Markov cocycles on Xr can be

uniquely written as a linear combination of M0, . . . ,Mr−1. For i ∈ {0, . . . , r−1} let (x(i), y(i)) ∈ ∆Xr

such that x
(i)
~0

= i, y
(i)
~0

= i + 2 mod r and x
(i)
~n = y

(i)
~n for all ~n ∈ Zd \ {~0}. Given a shift-invariant

Markov cocycle M , let

αi := M(x(i), y(i)) (2.4.4)

We claim that for all (x, y) ∈ ∆Xr :

M(x, y) =

r−1∑
i=0

αi ·Mi(x, y). (2.4.5)

Since Xr has the pivot property (Proposition 2.3.4), by (2.2.2) it is sufficient to show that (2.4.5)

holds for all (x, y) ∈ ∆Xr which differ only at a single site. By shift-invariance of M and the Mi’s

it is further enough to show this for (x, y) which differ only at the origin ~0. In this case, we note
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that (x, y) coincide with either (x(i), y(i)) or (y(i), x(i)) on the sites {~0} ∪ ∂{~0} for some i. Without

loss of generality assume that (x, y) coincide with (x(i0), y(i0)) on the sites {~0}∪∂{~0}. Since M and

the Mi’s are Markov cocycles we have M(x, y) = M(x(i0), y(i0)) = αi0 and

r−1∑
j=0

αj ·Mj(x, y) =
r−1∑
j=0

αjMj(x
(i0), y(i0)) =

r−1∑
j=0

αjδi0,j = αi0 .

Remark: Without the assumption of shift-invariance, a similar argument shows that any

Markov cocycle on Xr is of the following form:

M(x, y) =
r−1∑
i=0

∑
~n∈Zd

ai,~nNi(x̂~n, ŷ~n) with ai,~n ∈ R for all ~n ∈ Zd, 0 ≤ i ≤ r − 1.

We now describe the space GZd

Xr
of Gibbs cocycles corresponding to shift-invariant nearest

neighbour interactions for Xr.

Proposition 2.4.3. Let r ∈ N \ {1, 2, 4} and d > 1. A shift-invariant Markov cocycle on Xr is a

Gibbs cocycle corresponding to a shift-invariant nearest neighbour interaction if and only if it is of

the form M =
∑r−1

i=0 αiMi, with
∑r−1

i=0 αi = 0 and Mi’s as in Proposition 2.4.2 and α0, . . . , αr−1

given by (2.4.4). In other words,

GZd

Xr
=

{
r−1∑
i=0

αiMi |
r−1∑
i=0

αi = 0

}
.

In particular, dim(GZd

Xr
) = r − 1.

Proof. Let M be a Gibbs cocycle given by a shift-invariant nearest neighbour interaction φ. Choose

(x(i), y(i)) ∈ ∆Xr as in the proof of Proposition 2.4.2 so that αi = M(x(i), y(i)). Expanding the

Gibbs cocycle we have:

M(x(i), y(i)) = φ([i+ 2]0)− φ([i]0)

+

d∑
j=1

(φ([i+ 2, i+ 1]j)− (φ([i, i+ 1]j) + φ([i+ 1, i+ 2]j)− φ([i+ 1, i]j)) .

Summing these equations over i we get:

r−1∑
i=0

αi =
r−1∑
i=0

M(x(i), y(i)) = 0
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Conversely, for any values αi = M(x(i), y(i)) such that
∑r−1

i=0 αi = 0 it is easy to see that there is

a corresponding nearest neighbour shift-invariant interaction φ: For instance, set φ([i, i+ 1]1) =

−
∑r−1

k=i αk, φ([i, i+ 1]j) = 0 for j = 2, . . . , d and φ([i+ 1, i]j) = φ([i]0) = 0 for j = 1, . . . , d and

i = 0, . . . , r − 1.

Let M̂ : ∆Xr → R be the Markov cocycle given by

M̂(x, y) :=
∑
n∈Zd

ŷn − x̂n, (2.4.6)

where (x̂, ŷ) ∈ ∆Ht satisfy φr(x̂) = x and φr(ŷ) = y. By the following we observe that M̂(x, y) =

2
∑r−1

i=0 Mi(x, y) for all (x, y) ∈ ∆Xr :

As in the proof of Proposition 2.4.2 it sufficient to verify this for (x, y) = (x(i0), y(i0)) where

0 ≤ i0 ≤ r − 1. In that case

M̂(x(i0), y(i0)) = ŷ
(i0)
0 − x̂(i0)

0 = 2

and

2
r−1∑
i=0

Mi(x
(i0), y(i0)) = 2

r−1∑
i=0

δi0,i = 2.

Corollary 2.4.4. Let r ∈ N \ {1, 2, 4} and d > 1. Any shift-invariant Markov cocycle M on Xr

can be uniquely written as

M = M0 + αM̂

where M0 is some Gibbs cocycle, α ∈ R and M̂ is given by (2.4.6).

Thus, the conclusion of the second part of the strong version of the Hammersley-Clifford The-

orem regarding shift-invariant Markov cocycles fails for Xr. Our next proposition asserts that

the conclusion of the first part of the strong version of the Hammersley-Clifford Theorem still

holds for Xr. This immediately implies the conclusion of the first part of the weak version of the

Hammersley-Clifford Theorem of Xr.

Proposition 2.4.5. (MXr = GXr) Let r ∈ N\{1, 2, 4} and d > 1. Let M : ∆Xr → R be a Markov

cocycle. There exists a nearest neighbour interaction φ, which is not necessarily shift-invariant, so

that M = Mφ.

Proof. Given M ∈MXr , we will define a compatible nearest neighbour interaction φ as follows:

The interaction φ will assign 0 to any single site pattern. For ~n = (n1 . . . , nd) ∈ Zd, and

1 ≤ j ≤ d, let φ~n,j(a, b) denote the weight the interaction φ assigns to the pattern (a, b) on the edge

(~n, ~n+ ej). Set φ~n,j(a, b) = 0 whenever j ∈ {2, . . . , d}. For ~n = (n1, . . . , nd) ∈ Zd and i ∈ Zr define
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recursively

φ~n,1(i, i+ 1) :=

0 n1 ≤ 0

M(σ~ny(i), σ~nx(i)) + φ~n−~e1,1(i+ 1, i+ 2) n1 > 0

φ~n,1(i+ 1, i) :=

0 n1 ≥ 0

M(σ~n+~e1y(i), σ~n+~e1x(i)) + φ~n+~e1,1(i+ 2, i+ 1) n1 < 0

whereas in the proof of Proposition 2.4.2, (x(i), y(i)) ∈ ∆Xr are such that x
(i)
~0

= i mod r, y
(i)
~0

= i+2

mod r and x
(i)
~n = y

(i)
~n for all ~n ∈ Zd \ {~0}. To see that φ defines a nearest neighbour interaction for

M , since Xr has the pivot property (Proposition 2.3.4) it is sufficient to verify by (2.2.2)

M(y, x) =
∑
~n∈Zd

d∑
j=1

φ~n,j(x~n, x~n+~ej )− φ~n,j(y~n, y~n+~ej ). (2.4.7)

for (y, x) ∈ ∆Xr which differ at a single site n′ ∈ Zd.
Then (y, x) coincide with either (σ~n

′
y(i), σ~n

′
x(i)) or (σ~n

′
x(i), σ~n

′
y(i)) on the sites {~n′}∪∂{~n′} for

some 0 ≤ i ≤ r − 1. Without loss of generality assume that (y, x) coincide with (σ~n
′
y(i0), σ~n

′
x(i0))

on the sites {n′} ∪ ∂{n′} for some 0 ≤ i0 ≤ r − 1. Since M is a Markov cocycle

M(y, x) = M(σ~n
′
y(i0), σ~n

′
x(i0))

=

φ~n′,1(i0, i0 + 1)− φ~n′−~e1,1(i0 + 1, i0 + 2) if n′1 > 0

φ~n′−~e1,1(i0 + 1, i0)− φ~n′,1(i0 + 2, i0 + 1) if n′1 ≤ 0

=
∑
~n∈Zd

d∑
j=1

φ~n,j(x~n, x~n+ej )− φ~n,j(y~n, y~n+ej ).

Combining the above results we obtain:

Corollary 2.4.6. Let r ∈ N \ {1, 2, 4} and d > 1. There exists a shift-invariant Markov cocycle on

Xr which is given by a nearest neighbour interaction but not by a shift-invariant nearest neighbour

interaction, that is,

GZd

Xr
6= GXr ∩MZd

Xr
.

2.5 Markov Random Fields on Xr Are Gibbs

Our main goal is to prove the following result:
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Theorem 2.5.1. Let r ∈ N \ {1, 2, 4} and d > 1. Any shift-invariant Markov random field adapted

to Xr is a Gibbs state for some shift-invariant nearest neighbour interaction. In particular any

shift-invariant Markov random field µ with supp(µ) = Xr is a Gibbs state for some shift-invariant

nearest neighbour interaction.

Theorem 2.5.1 implies that the conclusion of the second part of the weak version of the

Hammersley-Clifford Theorem holds for Xr, that is, Theorem 1.1.1 although the argument is very

different from the safe-symbol case.

For a subshift X, a point x ∈ X will be called frozen if its homoclinic class is a singleton set.

This notion coincides with the notion of frozen colouring in [6]. By Proposition 2.3.4, Xr has the

pivot property so x ∈ Xr is frozen if and only if for every ~n ∈ Zd, x~j 6= x~k for some ~j,~k ∈ ∂{~n},
that is, any site is adjacent to at least two sites with distinct symbols. A subshift X will be called

frozen if it consists of frozen points, equivalently ∆X is the diagonal. A measure on a subshift X

will be called frozen if its support consists of frozen points. Note that the collection of frozen points

of a given topological Markov field X is itself a topological Markov field.

We derive Theorem 2.5.1 as an immediate corollary of the following proposition:

Proposition 2.5.2. Let r ∈ N \ {1, 2, 4} and d > 1. Let µ be a shift-invariant Markov random

field adapted to Xr with Radon-Nikodym cocycle equal to the restriction of eM to its support where

M ∈ MZd

Xr
\ GZd

Xr
is a Markov cocycle which is not given by a shift-invariant nearest neighbour

interaction. Then µ is frozen.

Note that any frozen probability measure is Gibbs with any nearest neighbour interaction

because the homoclinic relation of the support of the measure is trivial. Hence this proposition

proves that any shift-invariant Markov random field adapted to Xr is Gibbs for some nearest

neighbour interaction and thus implies Theorem 2.5.1. The intuition behind the proof of this

proposition is the following: For a Markov cocycle M =
∑r

i=1 αiMi the condition
∑r

i=1 αi > 0

indicates an inclination to raise the height function. However shift-invariance implies the existence

of a well defined “slope” for the height function in all directions. Unless this slope is extremal, that

is, maximal (±‖~n‖1) in some direction ~n ∈ Zd \ {~0}, this will lead to a contradiction.

In preparation for the proof, we set up some auxiliary results.

2.5.1 Real Valued Cocycles for Measure-Preserving Zd-Actions

We momentarily pause our discussion about Markov random fields on Xr to discuss cocycles for

measure-preserving Zd actions. Subcocycles and further generalisations will be discussed in Section

4.5. Let (X,F , µ, T ) be an ergodic measure-preserving Zd-action. A measurable function c :

X × Zd → R is called a T -cocycle if it satisfies the following equation µ-almost everywhere with

respect to x ∈ X:

c(x, ~n+ ~m) = c(x, ~n) + c(T ~nx, ~m) ∀~n, ~m ∈ Zd. (2.5.1)
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By (2.3.8) the function grad : Xr×Zd → R defined in (2.3.3) and (2.3.4) is indeed a shift-cocycle

with respect to the shift action on Xr.

We will use the following lemma:

Lemma 2.5.3. Let (X,F , µ, T ) be an ergodic measure-preserving Zd action and c : X × Zd → R
be a measurable cocycle such that for all ~n ∈ Zd the function fc,~n(x) := c(x, ~n) is in L1(µ), then for

all ~n = (n1, n2, . . . , nd) ∈ Zd

lim
k→∞

c(x, k~n)

k
=

∫
c(x, ~n)dµ(x)

=

d∑
i=1

ni

∫
c(x,~ei)dµ(x).

The convergence holds almost everywhere with respect to µ and also in L1(µ).

Proof. By the cocycle equation (2.5.1) for µ-almost every x ∈ X, any k ∈ N and n ∈ Zd we have:

c(x, k · ~n) =
k−1∑
i=0

c(T i~nx, ~n).

The existence of almost everywhere and L1 limit f̄(x) := limk→∞
c(x,k~n)

k follows from the pointwise

and L1 ergodic theorems. To complete the proof we need to show that the limit is constant almost

everywhere. We do this by showing that the limit is T -invariant. By the cocycle equation (2.5.1),

for almost every x ∈ X and any m,n ∈ Zd and k ∈ N we have:

c(x, k~n) = c(x, ~m+ k~n− ~m)

= c(x, ~m) + c(T ~mx, k~n− ~m)

= c (x, ~m) + c
(
T ~mx, k~n

)
+ c

(
T ~m+k~nx,−~m

)
.

Thus,

|f̄(x)−f̄(T ~m(x))| ≤ lim sup
k→∞

1

k

(
|c(x, ~m)|+ |c(T ~m+k·~nx,−~m)|

)
≤ lim sup

k→∞

1

k
|fc,~m(x)|+1

k
|fc,−~m(T ~nkT ~mx)|.

Since fc,~m, fc,−~m ∈ L1(µ), lim supk→∞
1
k |fc,~m(x)| and lim supk→∞

1
k |fc,−~m(T k~nT ~mx)| are both equal

to 0 almost everywhere (the second term vanishes because limk→∞
1
kg(Skx) = 0 a.e for g ∈ L1 and

S measure-preserving). Therefore,

lim
k→∞

c(x, k · ~n)

k
=

∫
c(x, ~n)dµ(x)

=
d∑
i=1

ni

∫
c(x,~ei)dµ(x).
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Remark: In the specific case that T is totally ergodic, meaning that the individual action of

each T ~n is ergodic for all ~n ∈ Zd \ {~0}, the lemma above is completely obvious since c(x,k·~n)
k =

1
k

∑k−1
j=0 c(T

j~nx, ~n), which is an ergodic average. The point of Lemma 2.5.3 is that ergodicity of the

Zd-action is sufficient for the limit to be constant.

The cocycle grad : Xr × Zd → Z is not only measurable but also continuous. We can use this,

along with compactness of Xr and the unit ball in Rd to obtain uniformity of the convergence with

respect to the “direction” on a set of full measure.

For convenience we extend the definition of grad : X × Zd → R given by (2.3.3) and (2.3.4) to

a function grad : X × Rd −→ R as follows:

grad(x, ~w) := grad(x, b~wc) (2.5.2)

where ~w = (w1, w2, . . . , wd) ∈ Rd and b~wc denotes (bw1c, bw2c, . . . , bwdc).

Lemma 2.5.4. Let r ∈ N\{1, 2, 4} and d > 1. Let µ be an ergodic measure on Xr. Then µ-almost

surely

lim
k→∞

sup
‖~w‖1=k

1

k
|grad(x, ~w)− 〈~w,~v〉| = 0

where

vj :=

∫
grad(x,~ej)dµ(x) , ~v := (v1, . . . , vd),

the supremum is over {~w ∈ Rd | ‖~w‖1 = k}, and 〈~n,~v〉 =
∑d

i=1 nivi is the standard inner product.

Proof. Let

Eε :=

{
x ∈ Xr | lim sup

k→∞
sup
‖~w‖1=k

1

k
|grad(x, ~w)− 〈~w,~v〉| > ε

}
.

We will prove the lemma by showing that µ(Eε) = 0 for all ε > 0.

Fix ε > 0. Since Qd is dense in Rd, using compactness of the unit ball in (Rd, ‖ · ‖1), we can

find a finite F ⊂ Qd which ε
8 -covers the unit ball. By this we mean that for all ~w ∈ Rd such that

‖~w‖1 = 1 there exists ~u ∈ F so that ‖~w − ~u‖1 ≤ ε
8 . Because F ⊂ Qd is finite, there exists M ∈ N

so that M~u ∈ Zd for all ~u ∈ F . By Lemma 2.5.3, there exists a measurable set X ′ ⊂ Xr with

µ(X ′) = 1 so that for all ~u ∈ F , x ∈ X ′

lim
k→∞

1

Mk
grad(x,Mk~u) = 〈~u,~v〉.

To complete the proof we will prove that X ′ ⊂ Ecε . Given x ∈ X ′ we can find an integer
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J > 8Mε−1 so that for all k > J
M and all ~u ∈ F∣∣∣∣ 1

Mk
grad(x,Mk~u)− 〈~u,~v〉

∣∣∣∣ < ε

8
.

Note that for all j > J ∣∣∣∣j −M ⌊
j

M

⌋∣∣∣∣ ≤ ε

8
j

Consider some ~w ∈ Rd such that ‖~w‖1 = j > J . We can find ~u ∈ F so that ‖ ~w
‖~w‖1 − ~u‖1 ≤

ε
8 . Let

k̃ := b jM c. Then

‖~w − k̃M~u‖1 ≤ ‖~w − j~u‖1 + |j − k̃M |‖~u‖1 ≤
ε

4
j. (2.5.3)

Now observe that |grad(x, ~w)| ≤ ‖~w‖1 for all x ∈ Xr, ~w ∈ Zd. From the cocycle property (2.3.8) it

follows that for all ~n, ~m ∈ Zd, x ∈ Xr:

grad(x, ~n) = grad(x, ~m) + grad(σ ~mx, ~n− ~m).

Therefore for all ~w′, ~u′ ∈ Rd

|grad(x, ~w′)− grad(x, ~u′)| ≤ ‖~w′ − ~u′‖1 + 2d.

Applying the above inequality with ~w′ = ~w and ~u′ = k̃M~u it follows using (2.5.3)∣∣∣grad(x, ~w)− grad(x, k̃M~u)
∣∣∣ ≤ ε

4
j + 2d.

Also, since ‖~v‖∞ ≤ 1, it follows using (2.5.3) that∣∣∣〈~w,~v〉 − 〈k̃M~u,~v〉
∣∣∣ < ε

4
j

which yields that for sufficiently large j,

1

j
|grad(x, ~w)− 〈~w,~v〉| < ε.

This proves that X ′ ⊂ Ecε .

2.5.2 Maximal Height Functions

For x̂ ∈ Ht and a finite F ⊂ Zd, let

Htx̂,F := {ŷ ∈ Ht | ŷ~n = x̂~n if ~n 6∈ F}.

Consider the partial ordering on Htx̂,F given by ŷ ≥ ẑ if ŷ~n ≥ ẑ~n for all ~n ∈ Zd.
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Lemma 2.5.5. Let x̂ ∈ Ht and N ∈ N be given. Then (Htx̂,F ,≥) has a maximum. If the maximum

is attained by the height function ŷ then for all ~n ∈ F :

ŷ~n = min{x̂~k + ||~n− ~k||1 | ~k ∈ ∂F}.

Proof. We will first prove that given height functions ŷ, ẑ ∈ Htx̂,F the function ŵ defined by

ŵ~i := max(ŷ~i, ẑ~i).

is an element of Htx̂,F .

To see that ŵ is a valid height function, we will show that |ŵ~i − ŵ~j | = 1 for all two adjacent

sites ~i,~j ∈ Zd. If (ŵ~i, ŵ~j) = (ŷ~i, ŷ~j) or (ŵ~i, ŵ~j) = (ẑ~i, ẑ~j) then |ŵ~i − ŵ~j | = 1 because ŷ, ẑ ∈ Ht.
Otherwise, we can assume without the loss of generality that ŵ~i = ŷ~i > ẑ~i and ŵ~j = ẑ~j > ŷ~j . By

Lemma 2.3.3, because (ŷ, ẑ) ∈ ∆Ht we have

ŷ~i − ẑ~i, ŷ~j − ẑ~j ∈ 2Z.

Thus ŷ~i ≥ ẑ~i + 2 and ẑ~j ≥ ŷ~j + 2. Since ŷ, ẑ ∈ Ht we have:

ŷ~j + 1 ≥ ŷ~i ≥ ẑ~i + 2 ≥ ẑ~j + 1 ≥ ŷ~j + 3,

a contradiction.

We conclude that ŵ ∈ Ht. Also ŵ~i = max(ŷ~i, ẑ~i) = x̂~i for all ~i ∈ F c. Hence ŵ ∈ Htx̂,F .

Since Htx̂,F is finite, it has a maximum.

Suppose the maximum is attained by a height function ŷ. Let ~i ∈ F , ~k ∈ ∂F and (~i1 =

i),~i2,~i3, . . . ,~ip, (~ip+1 = ~k) be a shortest path between ~i and ~k. Then

ŷ~i =

p∑
t=1

ŷ~it − ŷ~it+1
+ ŷ~k =

p∑
t=1

ŷ~it − ŷ~it+1
+ x̂~k.

Therefore ŷ~i ≤ ||~i− ~k||1 + x̂~k which proves that

ŷ~i ≤ min{x̂~k + ||~i− ~k||1 | ~k ∈ ∂F}. (2.5.4)

For proving the reverse inequality, note that if ŷ has a local minimum at some ~n ∈ F then the

height at ~n can be increased. Since ŷ is the maximum height function, for each ~n ∈ F at least one

of the adjacent sites ~m must satisfy ŷ~n − ŷ~m = 1. Iterating this argument, for all ~i ∈ F , we can

choose a path ~j1,~j2,~j3, . . . ,~jp+1, with ~j1 =~i, ~j2, . . . ,~jp ∈ F , ~jp+1 ∈ ∂F along which ŷ is increasing:
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ŷ~jt − ŷ~jt+1
= 1 for all t ∈ {1, 2, . . . , p}. Then

ŷ~i =

p∑
t=1

ŷ~jt − ŷ~jt+1
+ ŷ~jp+1

≥ ||~i−~jp+1||1 + ŷ~jp+1
.

Combining with the inequality (2.5.4), we get

ŷ~i = min{x̂~k + ||~i− ~k||1 | ~k ∈ ∂F}.

Consider a shift-invariant Markov cocycle M ∈ MZd

Xr
. Recall that by Corollary 2.4.4 there

exists α ∈ R and a Gibbs cocycle M0 ∈ GZd

Xr
compatible with a shift-invariant nearest neighbour

interaction such that M = M0 + αM̂ . The following lemma is based on the idea that in the “non-

Gibbsian” case α 6= 0, whenever ŷ is much bigger than x̂, M(x, y) is roughly α times the ‘volume’

of the (d+ 1)-dimensional ‘shape’ bounded between the graphs of ŷ and x̂ in Zd × Z.

For N ∈ N, let

DN :=
{
~n ∈ Zd | ‖~n‖1 ≤ N

}
(2.5.5)

be the ball of radius N centered at the origin in the standard Cayley graph of Zd. Also, denote:

SN :=
{
~n ∈ Zd | ‖~n‖1 = N

}
(2.5.6)

Note that SN = ∂(Dc
N ) = ∂DN−1.

Lemma 2.5.6. Fix r ∈ N \ {1, 2, 4} and d > 1. Let M = M0 + αM̂ be a shift-invariant Markov

cocycle on X
(d)
r where M0 ∈ GZd

X
(d)
r

is a Gibbs cocycle compatible with a shift-invariant nearest

neighbour interaction, M̂ is the Markov cocycle given by (2.4.6) and α > 0. Then there exist a

positive constant c1 > 0 (depending only on d) and another positive constant c2 > 0 (depending

only on d and M0) such that for all N ∈ N

M(x, y) ≥ c1α(ŷ~0 − x̂~0)d+1 − c2 ·Nd

for all (x̂, ŷ) ∈ ∆Ht satisfying x̂ ≤ ŷ, x = φ(x̂), y = φ(ŷ) and x|Dc
N

= y|Dc
N

.

Proof. Let M = M0 +αM̂ , (x, y) ∈ ∆Xr and (x̂, ŷ) ∈ ∆Ht be as given in the lemma. First we show

that there exists a suitable constant c1 > 0 (depending on d) so that

M̂(x, y) ≥ c1(ŷ~0 − x̂~0)d+1. (2.5.7)

Assume that ŷ~0 − x̂~0 > 0. Denote:

K :=
ŷ~0 − x̂~0

2
(2.5.8)
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Recall that (x̂, ŷ) ∈ ∆Ht, so by Lemma 2.3.3, ŷ~n − x̂~n ∈ 2Z for all ~n ∈ Zd. In particular, K is an

integer. Since ŷ~n − x̂~n ≥ 0 we have:

M̂(x, y) ≥
∑
~n∈DN

(ŷ~n − x̂~n) ≥
K∑
j=0

∑
~n∈Sj

(ŷ~n − x̂~n).

Since ŷ~n − x̂~n ≥ ŷ~0 − x̂~0 − 2‖~n‖1:

K∑
j=0

∑
~n∈Sj

(ŷ~n − x̂~n) ≥
K∑
j=0

|Sj |(ŷ~0 − x̂~0 − 2j).

Finally the estimates

|Sj | ≥ |{~n ∈ Sj | ~n > 0}| =
(
j + d− 1

d− 1

)
≥ 1

d!
jd−1

give

M̂(x, y) ≥ 1
d!

∑K
j=0 j

d−1(2K − 2j) ≥ 1

d!

b2K/3c∑
j=dK/3e

jd−1(2K − 2j)

≥ 1
d!
K
3

(
K
3

)d−1 2K
3 ≥ (6d)−(d+1)(ŷ0 − x̂0)d+1

proving (2.5.7) with c1 = (6d)−(d+1).

Let φ be the shift-invariant nearest neighbour interaction corresponding to M0. We will show

that there exists a suitable constant c2 > 0 (depending on M0 and d) so that |M0(x, y)| ≤ c2N
d.

By expressing M0 in terms of its interaction we see that

|M0(x, y)| ≤
∑

C∩DN 6=∅

|φ(y|C)− φ(x|C)| ≤
∑
~n∈DN

∑
C∩{~n}6=∅

|φ(x|C)− φ(y|C)|,

where C ranges over all the cliques (edges and vertices) in Zd. It follows that |M0(x, y)| ≤ c′2|DN |
where

c′2 := (4d+ 2) sup
{
|φ(x|C)| | x ∈ Xr and C is a clique in Zd

}
.

Since |DN | ≤ (2N + 1)d, it follows that |M0(x, y)| ≤ c2N
d with c2 := 3dc′2.

Putting everything together, we conclude that

M(x, y) ≥ αM̂(x, y)− |M0(x, y)| ≥ c1α(ŷ~0 − x̂~0)d+1 − c2 ·Nd.
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Under the same hypothesis except with α < 0, we get,

M(x, y) ≤ c1α · (ŷ~0 − x̂~0)d+1 + c2N
d

for the same constants c1, c2 > 0.

Lemma 2.5.7. Let r ∈ N \ {1, 2, 4} and d > 1. Let µ be a shift-invariant measure on Xr and

~n ∈ Zd such that ‖~n‖1 = 1. If ∣∣∣∣∫ grad(x, ~n)dµ(x)

∣∣∣∣ = 1,

then µ is frozen.

Proof. If
∣∣∫ grad(x, ~n)dµ(x)

∣∣ = 1 then either µ({x ∈ Xr | x~0 − x~n = 1 mod r}) = 1 or µ({x ∈
Xr | x~0 − x~n = −1 mod r}) = 1. In the first case it follows that µ-almost surely x~m−~n = x~m + 1

mod r and x~m+~n = x~m − 1 mod r for all ~m ∈ Zd, so µ-almost surely x is frozen. The second case

is similar.

In the course of our proof, it will be convenient to restrict to ergodic shift-invariant Markov

random fields. The following claim justifies this:

Theorem 2.5.8. All shift-invariant Markov random fields µ with specification Θ are in the closure

of the convex hull of the ergodic shift-invariant Markov random fields with specification Θ.

Proof. See Theorem 14.14 in [22].

We now proceed to complete the proof of Proposition 2.5.2.

Proof. Since a convex combination of frozen measures is frozen, by Theorem 2.5.8 it suffices to

prove that any ergodic Markov random field µ adapted to Xr with its Radon-Nikodym cocycle

equal to eM on its support where M = M0 + αM̂ (as in Corollary 2.4.4) and α 6= 0 is frozen.

Choose any µ satisfying the above assumptions, assuming without loss of generality that α > 0.

Let

vj :=

∫
grad(x,~ej)dµ(x) for j = 1, . . . , d. (2.5.9)

If |vj | = 1 for some 1 ≤ j ≤ d, it follows from Lemma 2.5.7 that µ is frozen. We can thus assume

that |vj | < 1 for all 1 ≤ j ≤ d. Choose ε > 0 satisfying ε < 1
4 min{1− |vj | | 1 ≤ j ≤ d}.

For k ∈ N, let

Ak =

{
x ∈ Xr | sup

‖~w‖1=k

1

k
|grad(x, ~w)− 〈~w,~v〉| < ε

}
.
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By Lemma 2.5.4 for sufficiently large k, µ(Ak) > 1 − ε. Consider x ∈ Ak ∩ supp(µ) such that

µ(Ak | [x]∂Dk−1
) > 1− 2ε. Then for all y ∈ Ak satisfying y|Dc

k−1
= x|Dc

k−1
and ~n ∈ ∂Dk−1

− grad(y, ~n) = ŷ~0 − ŷ~n ≤ −〈~n,~v〉+ εk < (1− ε)k. (2.5.10)

Choose ẑ which is maximal in Htx̂,Dk−1
and let z = φr(ẑ). It follows from Lemma 2.5.5 that for

some ~n ∈ ∂Dk−1,

ẑ~0 − x̂~n = ‖~n‖1 = k. (2.5.11)

Since x|Dc
k−1

= y|Dc
k−1

= z|Dc
k−1

we can assume by Lemma 2.3.3 that

x̂|Dc
k−1

= ŷ|Dc
k−1

= ẑ|Dc
k−1

. (2.5.12)

(2.5.10) together with (2.5.11) and (2.5.12) imply that ẑ~0 − ŷ~0 ≥ kε for all y ∈ Ak satisfying

y|Dc
k−1

= z|Dc
k−1

. Thus, by Lemma 2.5.6

M(y, z) > c1α(k · ε)d+1 − c2k
d > c3k

d+1,

the last inequality holding for some c3 > 0, when k is sufficiently large.

It follows that

µ([z]Dk−1
| [x]∂Dk−1

) ≥ µ([y]Dk−1
| [x]∂Dk−1

)ec3k
d+1
.

We can write Ak ∩ [x]∂Dk−1
=
⋃
y([y]Dk−1

∩ [x]∂Dk−1
), where the union is over all y ∈ LDk−1

(Xr)

such that [y]Dk−1
∩Ak ∩ [x]∂Dk−1

6= ∅. There are at most |LDk−1∪∂Dk−1
(Xr)| = eO(kd) terms in the

union above so

µ(Ak | [x]∂Dk−1
) ≤ eO(kd)e−c3k

d+1
µ([z]Dk−1

| [x]∂Dk−1
).

It follows that µ(Ak | [x]∂Dk−1
) → 0 as k → ∞. For k sufficiently large this would contradict our

choice of x, for which µ(Ak | [x]∂Dk−1
) > 1− 2ε.

2.6 Non-Frozen Adapted Shift-Invariant Markov Random Fields
on Xr Are Fully-Supported

We have concluded that any shift-invariant Markov random field which is adapted with respect to

Xr is a Gibbs measure for some shift-invariant nearest neighbour interaction. Our next goal is to

show that any such measure must be fully-supported on Xr.

Proposition 2.6.1. Let r ∈ N \ {1, 2, 4}, d > 1 and µ be a shift-invariant MRF adapted with

respect to Xr. Then either supp(µ) = Xr or µ is frozen.

Roughly speaking we shall show that for non-frozen shift-invariant Markov random fields the

height function corresponding to a typical point is “not very steep”. Given a height function that
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is “not very steep”, there is enough flexibility to “deform” the height function while keeping the

values fixed outside some finite set. For an adapted Markov random field, the “deformed height

function” corresponds to a point in the support as well, which will be the key to proving the required

result. Somewhat related methods can be found in Section 4.3 of [48]. This is further generalised

in Theorem 4.2.4.

We first introduce some more notation. For x ∈ Xr and a finite set F ⊂ Zd denote:

RangeF (x) := max
~n∈F

grad(x, ~n)−min
~n∈F

grad(x, ~n). (2.6.1)

Given A ⊂ Zd, x̂ ∈ Ht(A) and a finite set F ⊂ A ⊂ Zd, we define:

RangeF (x̂) := max
~n∈F

x̂~n −min
~n∈F

x̂~n. (2.6.2)

It follows that if x̂ ∈ Ht and x ∈ Xr are such that x = φr(x̂) then for all finite F ⊂ Zd, RangeF (x) =

RangeF (x̂).

Lemma 2.6.2. (“Extremal values of height obtained on the boundary”) Let F ⊂ Zd be a

finite set and x̂ ∈ Ht such that Range∂F (x̂) > 2. Then there exists ŷ ∈ Ht such that ŷ~n = x̂~n for

all ~n ∈ F c and

RangeF (ŷ) = Range∂F (ŷ)− 2 = Range∂F (x̂)− 2.

Proof. Denote

T := max
~n∈∂F

x̂~n and B := min
~n∈∂F

x̂~n.

Let

κ = κ(x̂, F ) :=
∑
~n∈F

max(x̂~n − T + 1, B − x̂~n + 1, 0).

The number κ is the absolute value for the deviations of x̂|F from the (open) interval (B, T ).

We prove the claim by induction on κ. If κ = 0 then y = x already satisfies the conclusion of this

lemma because B + 1 ≤ x̂~n ≤ T − 1 for all ~n ∈ F which implies that

RangeF (x̂) = max
~m∈F

x̂~m − min
~m∈F

x̂~m ≤ ( max
~m∈∂F

x̂~m − 1)− ( min
~m∈∂F

x̂~m + 1)

= Range∂F (x̂)− 2.

Now suppose κ > 0, and let n ∈ F be a coordinate where x̂ obtains an extremal value for

F ∪ ∂F . Without loss of generality suppose,

x̂~n = max
~m∈F∪∂F

x̂~m.

Since all neighbours of ~n are in F ∪ ∂F , it follows that x̂~m = x̂~n − 1 for all ~m adjacent to ~n.
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Therefore we have ŷ ∈ Ht given by

ŷ~m :=

x̂~m − 2 for ~m = ~n

x̂~m otherwise.

Since Range∂F (x̂) > 2, it follows that ŷn is neither a minimum nor a maximum for ŷ in F ∪ ∂F .

Thus κ(ŷ, F ) < κ(x̂, F ) and so we can apply the induction hypothesis on ŷ and conclude the

proof.

Lemma 2.6.3. (“Flat extension of an admissible pattern”) Let x̂ ∈ Ht and N ∈ N. Then

there exists ŷ ∈ Ht such that ŷ~n = x̂~n for ~n ∈ DN+1 and

Range∂DN+k
(ŷ) = Range∂DN

(x̂)− 2k,

for all 1 ≤ k ≤ Range∂DN
(x̂)

2 .

Proof. We will prove the following statement by induction on M ∈ N: For all N ∈ N and

height functions x̂ ∈ Ht(DN+1+M ) with Range∂DN
x̂ = 2M there exists a height function ŷ ∈

Ht(DN+1+M ) such that ŷ~n = x̂~n for all ~n ∈ DN+1 and 1 ≤ k ≤ M , Range∂DN+k
(ŷ) = 2M − 2k.

Observe that the height function ŷ satisfies in particular Range∂DN+M
(ŷ) = 0. Thus, the outermost

boundary of ŷ is flat and it can be extended to a height function on Zd, so the lemma will follow

immediately once we prove the statement above for all M ∈ N.

For the base case of the induction, there is nothing to prove.

Assume the result for some M ∈ N. Let x̂ ∈ Ht be a height function such that Range∂DN
x̂ =

2(M + 1). Denote Ñ := N + 1 + (M + 1) = N + M + 2. Let ~n ∈ DÑ \DN+1 be a site where x̂

obtains an extremal value for DÑ \DN . If there is no such site then

Range∂DN+1
(x̂) = max

~m∈∂DN+1

x̂~m − min
~m∈∂DN+1

x̂~m

= ( max
~m∈∂DN

x̂~m − 1)− ( min
~m∈∂DN

x̂~m + 1)

= 2M

proving the induction step for that case. Without loss of generality we assume that it is a maximum,

that is,

x̂~n = max
~m∈DÑ\DN

x̂~m.

Then the function ˆ̃y given by

ˆ̃y~m =

x̂~n − 2 if ~m = ~n

x̂~m otherwise
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is a valid height function on DÑ . Hence we have lowered the height function at the site ~n of x̂.

Repeating the steps for sites with extremal height (formally, this is another internal induction, see

for example the proof of Lemma 2.6.2), a height function ẑ can be obtained on DÑ such that ẑ = x̂

on DN+1 and

Range∂DN+1
(ẑ) = 2M.

Thus we can apply the induction hypothesis to ẑ, substituting N + 1 for N to obtain a height

function ŷ on DÑ such that ŷ = x̂ on DN+1 and

Range∂DN+k
(ŷ) = Range∂DN

(x̂)− 2k

for 1 ≤ k ≤ Range∂DN
(x̂)

2 .

This completes the proof of the statement.

Lemma 2.6.4. (“Patching an arbitrary finite pattern inside a non-steep point”) Let r 6=
1, 2, 4 be a positive integer, d > 1 and N, k ∈ N. Choose y ∈ Xr which satisfies Range∂D2N+2r+k+1

(y) ≤
2k and some x ∈ Xr. Then:

1. If either r is odd or x~n − y~n is even for all ~n ∈ Zd, then there exists z ∈ Xr such that

z~n =

x~n if ~n ∈ DN

y~n if ~n ∈ Dc
2N+2r+k+1

2. If r is even and x~n − y~n is odd for all ~n ∈ Zd , then there exists z ∈ Xr such that

z~n =

x~n+~e1 if ~n ∈ DN

y~n if ~n ∈ Dc
2N+2r+k+1

The idea of this proof lies in the use of Lemmata 2.6.2 and 2.6.3. Given any pattern on DN

we can extend it to a pattern on D2N with flat boundary which can be then extended to y a little

further away provided the range of y is not too large. There is a slight technical issue we deal with

in the proof below in case r is even. This is essentially due to the fact that for r even we have

x~n − x~m ≡ ‖~n− ~m‖1 mod 2 for all x ∈ Xr and ~n, ~m ∈ Zd.

Proof. By applying Lemma 2.6.2 k−1 times we conclude that there exists y′ ∈ Xr such that y′ = y

on Dc
2N+2r+k+1 and

Range∂D2N+2r+2
(y′) = 2.
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For all ~n, ~m ∈ ∂D2N+2r+2, ||~n− ~m||1 is even, therefore ŷ′~n and ŷ′~m have the same parity. Thus,

there exist two values c, d ∈ Zr which y′ takes on ∂D2N+2r+2. Consider a ∈ Zr which is adjacent

(for the Cayley graph of Zr) to both c and d. Then the configuration y(1) given by

y
(1)
~n :=


y′~n if ‖~n‖1 ≥ 2N + 2r + 3

a if ‖~n‖1 ≤ 2N + 2r + 2 is even

c if ‖~n‖1 ≤ 2N + 2r + 2 is odd

is an element of Xr. By Lemma 2.6.3 choose x(1) ∈ Xr such that x(1)|DN
= x|DN

and

Range∂D2N−1
(x(1)) = 0.

Equivalently, there exists b ∈ Zr so that x
(1)
n = b for all n ∈ ∂D2N−1.

If we are in case (1), either r is even and b ≡ a mod 2 or r is odd. Either way, there is some

integer k ∈ [0, . . . r − 1] such that a+ k ≡ b− k mod r. Thus, we can find y(2), x(2) ∈ Xr, so that

y(2) agrees with y(1) in Dc
2N+2r, x

(2) agrees with x(1) in D2N , and so that both x(2) and y(2) have

a common constant value a + k = b + (r − k) mod r on ∂D2N+r−k−1. Thus, we get the required

z ∈ Xr by setting

z~n :=

x
(2)
~n for ~n ∈ D2N+r−k−1

y
(2)
~n for ~n ∈ Dc

2N+r−k−1

To prove case (2) we follow the same procedure, substituting x by σ~e1(x).

We can now conclude the proof of Proposition 2.6.1:

Proof. Let µ be a shift-invariant Markov random field and v1, . . . , vd be given by (2.5.9).

Assume that supp(µ) is not frozen. Then by Lemma 2.5.7, |vj | < 1 for all 1 ≤ j ≤ d. Again,

choose ε > 0 satisfying ε < 1
4 min{1− |vj | | 1 ≤ j ≤ d}.

We need to show that for all N ∈ N and patterns c ∈ LDN
(Xr), µ([c]DN

) > 0.

From Lemma 2.5.4 it follows that for sufficiently large k,

µ({y ∈ Xr | Range∂Dk
(y) ≤ 2(1− ε)k}) > 1− ε.

Now choose k > (2N + 2r + 1) large enough so that there exists y ∈ supp(µ) with

Range∂Dk
(y) ≤ 2(1− ε)k ≤ 2(k − (2N + 2r + 1)).

By Lemma 2.6.4, it follows that there exists z ∈ Xr with z~n = y~n for ~n ∈ Zd \ Dk and z~n = c~n

for ~n ∈ DN . Since µ is an adapted Markov random field it follows that z ∈ supp(µ), in particular
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µ([c]DN
) > 0.

2.7 Fully Supported Shift-Invariant Gibbs Measures on Xr

Next we demonstrate the existence of a fully-supported shift-invariant Gibbs measure for shift-

invariant nearest neighbour interactions on Xr. We will obtain such measures by showing that

equilibrium measures for certain interactions are non-frozen and thus are fully supported by Propo-

sition 2.6.1. To state and prove this result, we need to introduce (measure-theoretic) pressure and

equilibrium measures and apply a theorem of Lanford and Ruelle relating equilibrium measures and

Gibbs measures. Our presentation is far from comprehensive, and is aimed to bring only definitions

necessary for our current results. We refer readers seeking background on pressure and equilibrium

measures to the many existing textbooks on the subject, for instance [47, 58].

Let µ be a shift-invariant probability measure on a shift of finite type X. The measure theoretic

entropy can be defined by

hµ := lim
N→∞

1

|DN |
HDN
µ , (2.7.1)

where DN was defined in (2.5.5) and

HDN
µ :=

∑
a∈LDN

(X)

−µ([a]DN
) logµ([a]DN

), (2.7.2)

with the understanding that 0 log 0 = 0.

Given a continuous function f : X → R, the measure-theoretic pressure of f with respect to µ

is given by

Pµ(f) :=

∫
fdµ+ hµ.

A shift-invariant probability measure µ is an equilibrium state for f if the maximum of ν 7→ Pν(f)

over all shift-invariant probability measures is attained at µ. The existence of an equilibrium state

for any continuous f follows from upper-semi-continuity of the function ν 7→ Pν(f) with respect to

the weak-∗ topology.

Let φ be a nearest neighbour interaction on X. As in [47] define a function fφ : X −→ R by

fφ(x) :=
∑

A finite | ~0∈A⊂Zd

1

|A|
φ(x|A). (2.7.3)

The following is a restricted case of a classical theorem by Lanford and Ruelle:

Theorem 2.7.1. (Lanford-Ruelle Theorem [27, 47]) Let X be a Zd-shift of finite type and

φ a shift-invariant nearest neighbour interaction. Then any equilibrium state µ for fφ is a Gibbs

state for the given interaction φ adapted to X.
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The statement of the Lanford-Ruelle theorem (in [27, 47]) does not explicitly mention the

adaptedness assumption because for them Gibbs states are always adapted. The topological entropy

of a Zd-subshift X is given by

h(X) := lim
k→∞

1

|Dk|
log |LDk

(X)|.

We recall the well known variational principle for topological entropy of Zd-actions, which (in

particular) asserts that h(X) = supν hν whenever X is a Zd-shift space and the supremum is over

all probability measures on X (Theorem 3.12 in [47]).

Lemma 2.7.2. Let µ be shift-invariant, frozen Markov random field on AZd
, then hµ = 0.

Proof. Consider Xµ := supp(µ). This is a shift-invariant topological Markov field, consisting of

frozen points. Thus for all finite F ⊂ Zd, |LF (Xµ)| ≤ |L∂F (Xµ)| . In particular,

log |LDk
(Xµ)| ≤ log |L∂Dk

(Xµ)| ≤ Ckd−1.

It follows that h(Xµ) = 0, so by the variational principle hµ = 0.

Lemma 2.7.3. Let M be a Gibbs cocycle on Xr with a shift-invariant nearest neighbour interaction.

Then there exists a shift-invariant nearest neighbour interaction φ such that M = Mφ and any

equilibrium measure for fφ is non-frozen.

Proof. Let (x(i), y(i)) ∈ ∆Xr be as in the proof of Proposition 2.4.2. If M ∈ GXr then there exists

a shift-invariant nearest neighbour interaction φ so that

M(x(i), y(i)) = φ([i+ 2]0)− φ([i]0)

+
d∑
j=1

(φ([i+ 2, i+ 1]j)− φ([i+ 1, i]j) + φ([i+ 1, i+ 2]j)− φ([i, i+ 1]j)) .

Consider the nearest neighbour interaction φ̃ given by

φ̃ ([i+ 1, i]j) := φ̃ ([i, i+ 1]j) :=
1

2d

 d∑
j=1

(φ([i+ 1, i]j) + φ([i, i+ 1]j)) + φ([i]0)


for all i ∈ Zr and j ∈ {1, . . . , d}, and φ̃([i]0) = 0 for all i ∈ Zr.

It follows that M(x(i), y(i)) = Mφ̃(x(i), y(i)) for all i ∈ Zr and so M = Mφ̃.

Thus we can assume without loss of generality that φ = φ̃ satisfies

φ([i, i+ 1]j) = φ([i+ 1, i]j) = ai for all i ∈ Zr and j ∈ {1, 2, . . . , d}
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and φ([i]0) = 0 for all i ∈ Zr.
By (2.7.3): ∫

fφ(x)dµ(x) =

∫
1

2

d∑
j=1

(
φ([x−ej , x0]j) + φ([x0, xej ]j)

)
µ(x)

Thus: ∫
fφ(x)dµ(x) =

d∑
j=1

r−1∑
i=0

φ([i, i+ 1]j)µ([i, i+ 1]j) + φ([i+ 1, i]j)µ([i+ 1, i]j)

=
d∑
j=1

r−1∑
i=0

ai(µ([i, i+ 1]j) + µ([i+ 1, i]j)).

Let a = max1≤i≤r ai attained by ai0 . It follows that for any shift-invariant probability measure∫
fφ(x)dµ(x) ≤ d · a

with equality holding iff µ([i, i+ 1]j) = µ([i+ 1, i]j) = 0 for all ai < a and j = 1, . . . , d.

For a frozen measure µ it follows that for some j ∈ {1, 2, . . . , d}, µ([i, i+1]j) > 0 or µ([i+1, i]j) >

0 for all i ∈ {0, 1, . . . , r − 1}. Thus if ai < a for some 0 ≤ i ≤ r − 1, it follows that for any frozen

measure µ, ∫
fφ(x)dµ(x) < sup

ν

∫
fφ(x)dν(x). (2.7.4)

where the supremum is attained by the measure supported on the orbit of the point periodic point

x ∈ Xr given by

xn :=

{
i0 ‖n‖1 odd

i0 + 1 ‖n‖1 even

By Lemma 2.7.2, if µ is frozen then hµ = 0.

Thus in this case by (2.7.4) for any frozen probability measure µ

Pµ(fφ) =

∫
fφ(x)dµ(x) < sup

ν

∫
fφ(x)dν(x) ≤ sup

ν
Pν(fφ)

and in particular any frozen measure µ can not be an equilibrium measure for fφ.

The remaining case is when ai = a for all i, in which case fφ(x) = d ·a is constant. Thus, by the

variational principle supν Pν(fφ) = d · a+ supν hν = d · a+ h(Xr). Since h(Xr) > 0, it follows that

the strict inequality Pµ(fφ) < supν Pν(fφ) holds also in this case for any frozen measure µ. Thus we

have the result that for a given Gibbs cocycle with a shift-invariant nearest neighbour interaction

there exists an interaction for that cocycle such that the corresponding equilibrium state is not

frozen.
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Corollary 2.7.4. Let r ∈ N \ {1, 2, 4} and d > 1. For all shift-invariant Gibbs cocycles M

on Xr there exists a shift-invariant nearest neighbour interaction φ on Xr with M = Mφ and a

corresponding shift-invariant Gibbs state ν with supp(ν) = Xr.

Proof. By Lemma 2.7.3, there exists a shift-invariant nearest neighbour interaction φ on Xr with

M = Mφ and an equilibrium measure µ for fφ which is non-frozen. By the Lanford-Ruelle Theorem

such µ is a Gibbs state for φ and by Proposition 2.6.1 it is fully supported.

2.8 “Strongly” Non-Gibbsian Shift-Invariant Markov Random
Fields

In this section we will prove Theorem 1.1.2, that is, demonstrate the existence of shift-invariant

Markov random fields whose specification is not given by any shift-invariant finite range interaction.

In contrast to Gibbs measures with shift-invariant finite range interaction, our example proves that

generally the specification of a shift-invariant Markov random field cannot be “given by a finite

number of parameters”. Our construction is somewhat similar to the checkerboard island system

as introduced in [44].

Let A be the alphabet consisting of the 18 ‘tiles’ illustrated in Figure 2.1: A blank tile, a “seed”

tile (marked with a “0”), 8 “interior arrow tiles”( 4 of them have arrows in the coordinate directions

and the rest are “corner tiles”) and finally 8 additional “border arrow tiles”( marked by an extra

symbol “B”).

0

B
B

B
B

B B

B

B

      Blank Tile               Square Tiles

Figure 2.1: The Alphabet A

All tiles other than the blank tile will be called square tiles and the tiles with arrows will be

called arrow tiles. The arrow tiles with ‘B’ will be called border tiles and those without ‘B’ will be

called interior tiles. Configurations of an (2n+ 1)× (2n+ 1) square shape whose inner boundary

consists of border tiles as illustrated by the example in Figure 2.2 will be called an n-square-island.

A square-island refers to an n-square island for some n.
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B B B
B

B

B

BB B

B

BB

B

B

B

B

B

BBBBBBB

B

0

Figure 2.2: A 3-Square-Island

Informally, the idea is to have the square tiles form square-islands with the seed tile in the center

and border tiles on their boundary “floating in the sea of the blank tiles”. A ‘generic’ configuration

can be seen in Figure 2.3.

B
B B B B

B

B

B

BBBBB

B

B

B

B
B B

0
B

BBB

B

0

B B B
B

B

B

BB B

B

BB

B

B

B

B

B

BBBBBBB

B

0

Figure 2.3: A ‘Generic’ Configuration

Let X be the nearest neighbour shift of finite type on the alphabet A with constraints:

1. Any “arrow head” must meet an “arrow tail” of matching type (interior or border) and vice

versa.

2. Adjacent arrow tiles should not point in opposite directions.

3. Two corner direction tiles cannot be adjacent to one another.

4. The seed tile is only allowed to sit adjacent to straight arrow tiles.

5. An interior tile is always surrounded by other square tiles while a border tile has an interior

tile on its right and the blank tile on its left (left and right here are taken from the point of

view of the arrow).

Notice that the arrow tiles can turn only in the clock-wise direction. By Constraint (1), every

arrow must either be a part of a bi-infinite path or a closed path. Any such path must either trace

a straight line (vertical or horizontal) or an “L shape” or a “U shape”, or a closed path which traces

a rectangle. By Constraint (5) we find that tiles forming a rectangular path must have square tiles

to their right (in the interior of the rectangle). These are confined to the interior of the rectangle

and thus must themselves trace a smaller rectangle (smaller in terms of the area confined by the
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rectangle). Note that in constraint (5) we mean in particular that corner direction border tiles

have blank tiles on the two sites on their left (where left is taken from the point of view of both the

initial direction and the final direction of the arrow). By Constraints (3) and (2) we can conclude

by induction on the length that closed paths must actually trace squares with a seed in the center.

It follows that the finite connected components of the square tiles are square-islands. The length

of these square-islands is 2N + 1 for some N ∈ N because of Constraints (3) and (4). Two such

square-islands cannot be adjacent because of Constraint (5).

We can also exclude the possibility of a “U shaped” path using Constraints (3) and (2), again

by induction on the length of the “base of the U”.

Because a border of blank tiles can be filled either with a square-island or with blank tiles, one

can easily deduce that X has positive entropy.

For r ∈ N denote by Br ⊂ Z2, the l∞-ball of radius r in Z2, that is,

Br := {(i, j) ∈ Z2 | |i|, |j| ≤ r}.

Proposition 2.8.1. Let µ be any measure of maximal entropy for X. Then µ is fully-supported.

Proof. We will begin by proving that µ-almost surely any square tile is part of a square-island.

Since a seed must be surrounded by arrow tiles, it suffices to prove that any arrow tile is part of a

square-island. By the discussion above, any arrow tile is part of a path which is bi-infinite or traces

a square. An infinite path is either “L shaped” or a straight vertical or horizontal line. It is easily

verified that the appearance of an “L shape” in the origin is a transient event with respect to the

horizontal or vertical shifts, so by Poincaré recurrence the probability of having a “L shaped path”

is zero. An infinite horizontal line forces a half space of horizontal straight line. This forces either

a transient event or periodicity. Because X has positive entropy, for a measure of maximal entropy

for X, the measure of periodic points is 0 as well. Thus µ-almost surely, any arrow tile is part of a

path which traces a square. By Constraint (5) either the square tile is contained in a square-island

or there is an infinite sequence of nested square paths. The latter is again a transient event.

Let x ∈ X be such that it does not have any infinite connected component composed of square

tiles. We will now show for all r ∈ N that there exists a finite set Ar such that Br ⊂ Ar ⊂ Z2 and

xi is the blank tile for all i ∈ ∂Ar. Let Sq1 ∈ AC1 , Sq2 ∈ AC2 , . . . , Sqk ∈ ACk be an enumeration of

the square-islands in x such that Ci ∩Br+1 6= ∅ . Let

Ar :=
k⋃
i=1

Ci ∪Br.

Since every square-island is surrounded by the blank tile, Ar has the required properties.

Consider some y ∈ X and n ∈ N. We will prove that µ([y]Bn) > 0. Any incomplete square-island

in y|Br can be completed (possibly in multiple ways) in B4r. By completing these square-islands
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we can obtain z ∈ X such that it satisfies

zi :=

yi for i ∈ Br
blank tile for i ∈ Bc

4r.

Now choose any x ∈ supp(µ) which does not have any infinite connected component composed

of square tiles. As previously discussed we can find A4r ⊂ Z2 such that B4r ⊂ A4r and xi is the

blank tile for all i ∈ ∂A4r. Then z|∂A4r = x|∂A4r . By the Lanford-Ruelle Theorem µ is a Markov

random field with the uniform specification adapted to X. Therefore

µ([z]A4r∪∂A4r)

µ([x]A4r∪∂A4r)
= 1

proving µ([z]Br) = µ([y]Br ]) > 0.

We now describe a subshift of finite type, Y , for which dimension of the space of Markov cocycles

is infinite. Y is a nearest neighbour shift of finite type with the alphabet as in Figure 2.1 but now

with two types of square tiles, type 1 and 2. The adjacency rules are as in the subshift X but also

force adjacent square tiles to be of the same type, that is, any square-island in an element of Y will

consist entirely of tiles of type 1 or of type 2. Let p = (pi)i∈N ∈ (0, 1)N and φ : Y −→ X be the

map which forgets the type of square tiles. We will now construct a shift-invariant Markov random

field µp obtained by picking x ∈ X according to a fixed measure of maximal entropy µ and then

choosing the type of square-islands in x with the distribution: an i-square-island is of type 1 with

probability pi and 2 with probability 1− pi. Precisely, let F := φ−1(Borel(X)) be the pull-back of

the Borel sigma-algebra on X. For all y ∈ Y , i ∈ N and Λ ⊂ Z2 finite consider the functions

mi
Λ(y) := the number of i-square-islands of type 1 in y intersecting Λ

and

niΛ(y) := the number of i-square-islands of type 2 in y intersecting Λ.

µp is the unique probability measure on Y satisfying µp|F = φ−1µ, the pull-back of the measure µ

and

µp([y]Λ | F)(y) =

∞∏
i=1

p
mi

Λ(y)
i (1− pi)n

i
Λ(y)

for all Λ ⊂ Z2 finite, y ∈ Y . In particular, if there are no square-islands in y intersecting both Λ

and Z2 \Λ then µp([y]Λ) can be written as a product of the distribution φ−1µ and the distribution

of colours, that is,

µp([y]Λ) = µ([φ(y)]Λ)
∞∏
i=1

p
mi

Λ(y)
i (1− pi)n

i
Λ(y)
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and further, for finite sets Γ ⊃ Λ ∪ ∂Λ

µp
(
[y]Λ

∣∣[y]Γ\Λ
)

= µ
(
[φ(y)]Λ

∣∣[φ(y)]∂Λ

) ∞∏
i=1

p
mi

Λ(y)
i (1− pi)n

i
Λ(y). (2.8.1)

Let (y, y′) ∈ ∆Y and F be the set of sites on which (y, y′) differ. We note that if y|C is an

infinite connected component consisting of square tiles then y|C = y′|C , that is, C ∩ F = ∅. Thus

we can choose a finite set Λ ⊂ Z2 such that F ⊂ Λ and yi = y′i is a blank tile for all i ∈ ∂Λ. Since

µ is a Markov random field with uniform specification, (2.8.1) implies for all finite sets Γ ⊃ Λ∪ ∂Λ

that

µp ([y′]Γ)

µp ([y]Γ)
=

∞∏
i=1

p
mi

Λ(y′)−mi
Λ(y)

i (1− pi)n
i
Λ(y′)−ni

Λ(y) (2.8.2)

=

∞∏
i=1

p
mi

F (y′)−mi
F (y)

i (1− pi)n
i
F (y′)−ni

F (y).

Let Mp be the shift-invariant cocycle on Y given by the following:

Mp(y, y′) =

∞∑
i=1

(mi
F (y′)−mi

F (y)) log(pi) + (niF (y′)− niF (y)) log(1− pi)

for all (y, y′) ∈ ∆Y and the finite set F ⊂ Z2 on which they differ.

It follows from (2.8.2) that

µp([y′]Γ)

µp([y]Γ)
= eMp(y,y′) (2.8.3)

whenever (y, y′) ∈ ∆Y and Γ satisfies the assumptions above. It follows that Mp is the logarithm

of the Radon-Nikodym cocycle for µ.

We first state a small technical lemma:

Lemma 2.8.2. Let (y, y′), (z, z′) ∈ ∆Y and F be the set of sites on which y and y′ differ. Suppose

y|F = z|F and y′|F = z′|F ,

y|F c = y′|F c and z|F c = z′|F c .

Let C ⊂ Z2 be a (2i+ 1)× (2i+ 1) square shape such that y|C is an i-square-island of type 1 and

C ∩ F 6= ∅. Then z|C = y|C .
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For all A ⊂ Z2 let

∂2(A) := {i ∈ Z2 \A | there exists j ∈ A such that ‖i− j‖1 ≤ 2}.

Proof. Let C1, C2, . . . , Cn ⊂ Z2 be the square shapes such that for all 1 ≤ j ≤ n,

1. y′|Cj is a square-island.

2. There is a vertex l ∈ Cj ∩ C such that yl is a border tile.

If there is no such square shape and E is the union of all the edges of C, then E ⊂ F implying

that z|C = y|C . Otherwise we note that by Constraint (5) y′|∂Cj
consists only of blank tiles for all

1 ≤ j ≤ n and divide the proof into the following cases:

1. n = 1 and C ⊂ C1: Since C 6= C1 are square shapes and y|∂(Cc) consists of border tiles, F

completely contains at least two edges of C. Thus y|F completely determines the square-island

y|C and z|C = y|C .

2. For some 1 ≤ j ≤ n, Cj completely contains one of the edges of C and C 6⊂ Cj: Suppose Cj

contains the top edge T of C. Since C 6⊂ Cj , T does not intersect the top edge of Cj and thus

T ⊂ F . Then y|F completely determines the square-island y|C and z|C = y|C .

3. For all 1 ≤ j ≤ n the square shape Cj does not contain any of the edges of C completely: Let

E denote the union of all the edges of C. By Constraint (5), for all 1 ≤ j ≤ n and l ∈ ∂2Cj ,

y′l is either a blank tile or a border tile implying that C∩∂2Cj ⊂ F . Also y′|E\⋃n
j=1 Cj

consists

only of blank tiles therefore E \ ∪nj=1Cj ⊂ F . Thus we find thatE \ n⋃
j=1

Cj

 ∪
 n⋃
j=1

C ∩ ∂2Cj

 ⊂ F
is a connected set in Z2 and touches all the edges of C. Thus y|F completely determines the

square-island y|C proving that y|C = z|C .

Proposition 2.8.3. For any p ∈ (0, 1)N, the measure µp defined above is a shift-invariant Markov

random field with Radon-Nikodym cocycle Mp.

Proof. By (2.8.3) we are left to prove that the shift-invariant cocycleMp is Markov. Let (y, y′), (z, z′) ∈
∆Y and F ⊂ Z2 be as in Lemma 2.8.2. We will show that mi

F (y′)−mi
F (y) = mi

F (z′)−mi
F (z): The

inequality mi
F (z) ≥ mi

F (y) follows by Lemma 2.8.2. By interchanging z by y the reverse inequality

holds, proving mi
F (z) = mi

F (y), and similarly we obtain that mi
F (z′) = mi

F (y′). It follows that Mp

is Markov.
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Proposition 2.8.3 above proves the existence of uncountably many linearly independent shift-

invariant Markov cocycles which have corresponding fully-supported shift-invariant Markov random

fields. Since the space of Markov cocycles which come from some shift-invariant finite range in-

teraction is a union of finite dimensional vector spaces, this further implies that there exists a

shift-invariant Markov random field which is not Gibbs for any shift-invariant finite range interac-

tion proving Theorem 1.1.2. Alternatively, note that for any Gibbs cocycle with some shift-invariant

finite range interaction the magnitude of the cocycle at a particular homoclinic pair is at most linear

in the size of set of sites at which the two configurations differ. We can choose a p ∈ (0, 1)N such

that this does not happen.

A simple variation on the above construction yields topological Markov fields which are not

sofic: Choose p ∈ [0, 1]N. If pi = 0 or pi = 1, this would disallow square-islands of certain types

for specific sizes. Each such p would determine a shift-invariant Markov random field supported

on a shift space contained in Y . Since there are uncountably many such subshifts a majority of

such spaces will be not sofic. However it is easy to see from the proofs above that these are global

topological Markov fields.
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Chapter 3

Generalisation of the

Hammersley-Clifford Theorem on

Bipartite Graphs

In this chapter we will prove Theorem 1.2.1. Most of this chapter is a part of the submitted

manuscript [11]. Taking inspiration from symbolic dynamics we will define n.n.constraint spaces

in Section 3.1. Section 3.2 builds up the necessary background for this work. In Subsection 3.2.1

we introduce Hammersley-Clifford spaces and in Subsection 3.2.2 we introduce Markov-similarity

and V -good pairs. In Subsection 3.2.3 we introduce folding and strong config-folding. Section 3.3

states and proves the main results of this chapter. Since the proofs are technical we work out a

concrete example of our results in Subsection 3.3.1.

In this chapter G = (V, E) will always denote an undirected locally finite, countable, bipartite

graph without self-loops and multiple edges and A will always denote a finite set and be referred

to as the alphabet. H = (VH, EH) will always denote a finite undirected graph with or without

self-loops. Adjacency in a graph S will be denoted by ∼S . We will often drop the subscript when

the denotation is clear from the context. We remark that in this chapter given A ⊂ B ⊂ V, given

b ∈ AB the cylinder set (as defined in Section 2.1.1) [b]A also represents the corresponding pattern

b|A.

3.1 N.N.Constraint Spaces

The following definitions take inspiration from symbolic dynamics ([29]): A closed configuration

space is a closed subset of configurations contained in AV . Let F be a given set of patterns on

finite sets. Then the configuration space with constraints F is defined to be

XF := {x ∈ AV | patterns from F do not appear in x}.
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A set of constraints F is called nearest neighbour if F consists of patterns on cliques, that is, for

all [a]F ∈ F , diam(F ) ≤ 1.

A n.n.constraint space is a configuration space with nearest neighbour constraints. Note that if

G is bipartite then F consists of patterns on edges and vertices. These spaces correspond to nearest

neighbour shifts of finite type as defined in Subsection 2.1.3.

Let Hom(G,H) denote the space of all graph homomorphisms (defined in Section 2.3) from G
to H. For example it was mentioned in Section 2.3 that if C3 is the 3-cycle with vertices 0, 1 and

2 then the space of 3-colourings is Hom(G, C3).

Given a graphs G and H, Hom(G,H) is an n.n.constraint space where the constraint is given

by

F := {[a, b]v,w | a � b ∈ VH and v ∼ w ∈ V}.

Then for all x ∈ XF and vertices v ∼ w ∈ V, xv ∼ xw which implies x ∈ Hom(G,H). Conversely

for all homomorphisms x ∈ Hom(G,H) and vertices v ∼ w ∈ V we have [x]{v,w} /∈ F and hence

x ∈ XF .

N.N.Constraint spaces arise naturally in the study of MRFs as is shown in the following propo-

sitions.

Proposition 3.1.1. Let A be some finite set, G = (V, E) be a graph and X ⊂ AV be an n.n.constraint

space. Then X is a topological Markov field.

Proof. Consider A ⊂ V finite and x, y ∈ X such that x|∂A = y|∂A. We want to prove that z ∈ AV

defined by

zv :=

xv if v ∈ A ∪ ∂Ayv if v ∈ Ac

is an element of X. Let B ⊂ V be a clique. If B∩A 6= φ then B ⊂ A∪∂A and z|B = x|B ∈ LB(X)

else B ∩A = φ implying z|B = y|B ∈ LB(X). Since X is an n.n.constraint space z ∈ X.

The following proposition completes the bridge between MRFs and n.n.constraint spaces.

Proposition 3.1.2. Let G = (V, E) be a given graph and X be a topological Markov field on the

graph G with a safe symbol. Then X is an n.n.constraint space.

Remark: If µ is an MRF then supp(µ) is a topological Markov field. Thus this proposition implies

that if a measure µ satisfies the hypothesis of the weak Hammersley-Clifford theorem (Theorem

2.2.2), that is, if µ is an MRF such that supp(µ) has a safe symbol then supp(µ) is an n.n.constraint

space. The conclusion of this proposition does not hold without assuming presence of a safe symbol.

(look at the comments following proof of Proposition 3.5 in [12])

Proof. Let ? be a safe symbol for X. Consider the set

F := {a ∈ AA |A ⊂ V forms a clique and there does not exist x ∈ X such that x|A = a}.

56



Note that X ⊂ XF and if A ⊂ V is a clique then LA(XF ) = LA(X). We want to prove that

XF ⊂ X. We will proceed by induction on n ∈ N, the hypothesis being: Given A ⊂ V such that

|A| = n, LA(XF ) ⊂ LA(X).

The base case follows immediately. Suppose for some n ∈ N, given A ⊂ V satisfying |A| ≤ n,

LA(XF ) ⊂ LA(X).

For the induction step consider A ⊂ V such that |A| = n+ 1. There are two cases to consider:

If A is a clique then LA(XF ) = LA(X). If A is not a clique then there exists v ∈ A such that

|∂{v}∩A| < n. Let a ∈ LA(XF ). We will prove that a ∈ LA(X). Now | ({v} ∪ ∂{v})∩A|, |A\{v}| ≤
n, thus the induction hypothesis implies

a|({v}∪∂{v})∩A ∈ L({v}∪∂{v})∩A(X)

and

a|A\{v} ∈ LA\{v}(X).

Consider x, y ∈ X such that

x|({v}∪∂{v})∩A := a|({v}∪∂{v})∩A

and

y|A\{v} := a|A\{v}.

Since ? is a safe symbol for X therefore x?, y? ∈ AV given by

x?w :=

xw if w ∈ ({v} ∪ ∂{v}) ∩A

? otherwise

and

y?w :=

yw if w ∈ A \ {v}

? otherwise

are elements of X. Note that x?w = xw = aw, y?w = yw = aw if w ∈ ∂{v} ∩ A and x?w = y?w = ? if

w ∈ Ac. Therefore x?|∂{v} = y?|∂{v}. Since X is a topological Markov field, z ∈ AV defined by

zw :=

x?w if w ∈ {v} ∪ ∂{v}

y?w otherwise

is an element of X. But zv = x?v = xv = av and zw = y?w = yw = aw if w ∈ A \ {v}. Hence

z|A = a ∈ LA(X). This completes the induction. Hence X = XF .

N.N.Constraint spaces allow us to change configurations one site at a time provided the edge-

constraints are satisfied. To state this rigorously we define the following: given x ∈ AV , and distinct
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vertices w1, w2, . . . , wr ∈ V and c1, c2, . . . , cr ∈ A we denote by θw1,w2,...,wr
c1,c2,...,cr (x) an element of AV

given by

(θw1,w2,...,wr
c1,c2,...,cr (x))u :=

xu if u 6= w1, w2 . . . , wr

ci if u = wi for some 1 ≤ i ≤ r.

Proposition 3.1.3. Let G = (V, E) be a bipartite graph. Suppose X ⊂ AV is an n.n.constraint

space and x ∈ X. Let w1, w2, . . . , wr ∈ V be distinct vertices such that wi � wj for 1 ≤ i, j ≤ r

and c1, c2, . . . , cr ∈ A such that [ci, xw′ ]{wi,w′} ∈ L{wi,w′}(X) for all w′ ∼ wi and 1 ≤ i ≤ r. Then

θw1,w2,...,wr
c1,c2...,cr (x) ∈ X.

Specialising to r = 1, if X ⊂ AV is an n.n.constraint space and x ∈ X then for v ∈ V and c ∈ A,

θvc (x) ∈ X if and only if [xw, c]{w,v} ∈ L{w,v}(X) for all w ∼ v.

Proof. The constraint set for X consists only of patterns on edges and vertices. Thus it is sufficient

to check for all v ∼ w that

[θw1,w2,...,wr
c1,c2...,cr (x)]{v,w} ∈ L{v,w}(X).

Since wi � wj for all 1 ≤ i, j ≤ r at most one among v and w is wi for some 1 ≤ i ≤ r. If both

of them are not equal to wi then

[θw1,w2,...,wr
c1,c2...,cr (x)]{v,w} = [x]{v,w} ∈ L{v,w}(X).

Otherwise we may assume v = wi for some 1 ≤ i ≤ r giving us

[θw1,w2,...,wr
c1,c2...,cr (x)]{v,w} = [ci, xw]{wi,w} ∈ L{wi,w}(X).

3.2 Hammersley-Clifford Spaces and Strong Config-Folds

3.2.1 Hammersley-Clifford Spaces

A topological Markov field X ⊂ AV is called Hammersley-Clifford if the space of Markov cocycles

on X is equal to the space of Gibbs cocycles on X, that is, MX = GX . If X is invariant under the

some subgroup G ⊂ Aut(G) then X is said to be G-Hammersley-Clifford if MG
X = GG

X .

Examples: (Further examples and explaination follow the statement of Theorem 3.3.2)

1. A frozen space of configurations.

2. A topological Markov field with a safe symbol.
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3. Hom(G, Edge) where Edge consists of two vertices 0 and 1 connected by a single edge.

4. Hom(Zd, Cn) where Cn is an n-cycle, d > 1 and n 6= 4. (Proposition 2.4.5)

This gives examples of Hammersley-Clifford spaces which are not G-Hammersley-Clifford

spaces for some subgroup G ⊂ Aut(Zd). It will follow from Theorem 3.3.2 below and example

3 above that Hom(G, C4) is both Hammersley-Clifford and G-Hammersley-Clifford for all

bipartite graphs G and subgroups G ⊂ Aut(G).

3.2.2 Markov-Similar and V -Good Pairs

Suppose we are given a closed configuration space X, a Markov cocycle M ∈MX and an interaction

V on X. If M is not Gibbs with the interaction V we might be still interested in the extent to

which it is not. An asymptotic pair (x, y) ∈ ∆X is called (M,V)-good if

M(x, y) =
∑

S⊂V finite

(V ([y]S)− V ([x]S)) .

In most cases the Markov cocycle M will be fixed, so we will drop M and call a pair V -good instead

of (M,V )-good. An asymptotic pair (x, y) ∈ ∆X is said to be Markov-similar to (z, w) if there is

a finite set A ⊂ V such that

xu = yu,

zu = wu for u ∈ Ac

and

xu = zu,

yu = wu for u ∈ A ∪ ∂A.

Being V -good is infectious.

Proposition 3.2.1. Let X be an n.n.constraint space, M a Markov cocycle and V a nearest

neighbour interaction on X. The set of V -good pairs is an equivalence relation on X. Additionally

if (x, y), (z, w) ∈ ∆X are Markov similar then (x, y) is V -good if and only if (z, w) is V -good.

Proof. The reflexivity and symmetry of the relation V -good are immediate; the cocycle condition

implies that the relation is transitive. Thus the relation is an equivalence relation.

Let (x, y), (z, w) ∈ ∆X be Markov-similar pairs. Since M is a Markov cocycle

M(x, y) = M(z, w). (3.2.1)
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Let A ⊂ V be a finite set such that

xu = zu and yu = wu

for u ∈ A ∪ ∂A and

xu = yu and zu = wu

for u ∈ Ac. If S ⊂ V is a clique then either S ⊂ A ∪ ∂A or S ⊂ Ac. If S ⊂ A ∪ ∂A then

x|S = z|S and y|S = w|S

implying

V ([y]S)− V ([x]S) = V ([w]S)− V ([z]S).

If S ⊂ Ac then

x|S = y|S and z|S = w|S

implying

V ([y]S)− V ([x]S) = V ([w]S)− V ([z]S) = 0.

Since V is a nearest neighbour interaction∑
S⊂V finite

V ([y]S)− V ([x]S) =
∑

S⊂V finite

V ([w]S)− V ([z]S).

Since (x, y) is a V -good pair by (3.2.1)

M(z, w) = M(x, y) =
∑

S⊂V finite

(V ([y]S)− V ([x]S)) =
∑

S⊂V finite

V ([w]S)− V ([z]S)

completing the proof.

Corollary 3.2.2. Let X be an n.n.constraint space, M a Markov cocycle and V a nearest neighbour

interaction on X. Suppose for some (x, y) ∈ ∆X there exists a chain x = x1, x2, x3, . . . , xn = y

such that each (xi, xi+1) ∈ ∆X and is Markov similar to a V -good pair. Then (x, y) is V -good.

This follows from Lemma 3.2.1.

3.2.3 Strong Config-Folding

We shall now introduce graph folding and extract some of its properties so as to define a strong

notion of folding for closed configuration spaces. Graph folding was introduced in [37] and used

in [6] so as to prove a slew of properties which are satisfied by a given graph if and only if it is

satisfied by its folds. Fix some finite undirected graph H = (VH, EH) without multiple edges. For
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Figure 3.1: C4 and C3

any vertex a ∈ H we say that H \ {a} is a fold of the graph H if there exists b ∈ H \ {a} such that

{c ∈ VH | c ∼ a} ⊂ {c ∈ VH | c ∼ b}.

In such a case we say that a is folded into b.

For example in the 4-cycle C4 the vertex 3 can be folded into the vertex 1. However no vertex

can be folded in the 3-cycle C3.

For any vertex v ∈ V the n-ball around v is given by

Dn(v) := {w ∈ V | dG(v, w) ≤ n}

where dG is the graph distance on G.

We wish to generalise the following property:

Proposition 3.2.3. Consider a bipartite graph G = (V, E), a graph H = (VH, EH) and vertices

a, b ∈ VH where the vertex a can be folded into the vertex b. Let X = Hom(G,H). Then for all

edges (v1, v2), (v2, v3) ∈ E and c ∈ VH, [a, c]{v1,v2} ∈ L{v1,v2}(X) implies

[b, c]{v1,v2} ∈ L{v1,v2}(X)

[c, b]{v2,v3} ∈ L{v2,v3}(X) and

[b]∂D1(v1) ∈ L∂D1(v1)(X).

Proof. Since a ∼ c and a can be folded into the vertex b we have b ∼ c. Consider partite classes

P1, P2 ⊂ V of G such that v1 ∈ P1. Then the configuration x ∈ VVH given by

xv :=

b if v ∈ P1

c if v ∈ P2
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is an element of Hom(G,H). Thus

[b, c]{v1,v2} = [x]{v1,v2} ∈ L{v1,v2}(X)

[c, b]{v2,v3} = [x]{v2,v3} ∈ L{v2,v3}(X) and

[b]∂D1(v1) = [x]∂D1(v1) ∈ L∂D1(v1)(X).

For the rest of the chapter fix a bipartite graph G = (V, E). Let X ⊂ AV be an n.n.constraint

space. Given distinct symbols a, b ∈ A, we say that a can be strongly config-folded into b if for all

edges (v1, v2), (v2, v3) ∈ E and c ∈ A, [a, c]{v1,v2} ∈ L{v1,v2}(X) implies

[b, c]{v1,v2} ∈ L{v1,v2}(X), (3.2.2)

[c, b]{v2,v3} ∈ L{v2,v3}(X) and (3.2.3)

[b]∂D1(v1) ∈ L∂D1(v1)(X). (3.2.4)

In such a case, X ∩ (A \ {a})V is called a strong config-fold of X and X is called a strong config-

unfold of X ∩ (A\ {a})V . Note that X ∩ (A\ {a})V is still an n.n.constraint space and is obtained

by forbidding the symbol a in X. Further if X is invariant under a subgroup G ⊂ Aut(G) then

X ∩ (A \ {a})V is also invariant under G. Let Xa denote the strong config-fold X ∩ (A \ {a})V .

The idea of folding is captured by (3.2.2) while (3.2.3), (3.2.4) are reminiscent of homomorphism

spaces. Indeed if an n.n.constraint space X satisfies (3.2.2) then for all x ∈ X and v ∈ V such that

xv = a, the configuration θvb (x) ∈ X. Thus if a strongly config-folds into b then any appearance of

a in any configuration in X can be replaced by b. Recall that a safe symbol can replace any other

symbol. Thus the notion of strong config-folding generalises the notion of a safe symbol.

Proposition 3.2.4. Let G = (V, E) be a bipartite graph. Let X ⊂ AV be an n.n.constraint space

with a safe symbol ?. Then any symbol a ∈ A \ {?} can be strongly config-folded into ?. The

resulting strong config-fold Xa is also an n.n.constraint space with the same safe symbol ?.

Indeed Xa is obtained just by forbidding the symbol a from X and ? is still a safe symbol. In

general it is not necessary that the symbol being strongly config-folded into has to be a safe symbol.

For instance given any bipartite graph G the space Hom(G, C4), can be strongly config-folded in two

steps to Hom(G, Edge), yet C4 does not have any safe symbol. Note that the strong config-unfold

of an n.n.constraint space with a safe symbol need not have a safe symbol. For example if H is

the graph given by Figure 3.2 then for any bipartite graph G the top vertex is a safe symbol in the

space Hom(G, H).
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Figure 3.2: H

Figure 3.3: H′

However if we attach trees to H to obtain H′ given by Figure 3.3 then Hom(G,H′) does not have

any safe symbol but can be strongly config-folded into Hom(G,H) by folding in the trees attached

to H.

Strong config-folding induces a natural map between the spaces of configurations and their

cocycles as demonstrated by the following proposition.

Proposition 3.2.5. Let G be a bipartite graph and G ⊂ Aut(G) be a subgroup. Suppose X ⊂ AV

is a G-invariant n.n.constraint space and let Xa be its strong config-fold. Then the linear map

F : MG
X −→MG

Xa
given by F (M) := M |∆Xa

is surjective and F (GG
X) = GG

Xa
.

Proof. If M ∈ GG
X then the restriction of the G-invariant nearest neighbour interaction for M

to Xa gives us a G-invariant nearest neighbour interaction for F (M) proving that F (M) ∈ GG
Xa

.

Thus F (GG
X) ⊂ GG

Xa
. We will construct a map φ? : MG

Xa
−→MG

X such that φ?(GG
Xa

) ⊂ GG
X and

F ◦φ? is the identity map on MG
Xa

. Note that this is sufficient to conclude that F is surjective and

F (GG
X) = GG

Xa
thereby completing the proof.

The strong config-folding induces a mapping φ : X −→ Xa given by

φ(x)v :=

xv if xv 6= a

b if xv = a

for all x ∈ X and v ∈ V. Let g ∈ G and x ∈ X. Then

(φ(gx))v =

(gx)v = xg−1v if xg−1v 6= a

b if (gx)v = xg−1v = a

and

(g(φ(x))v = (φ(x))g−1v =

xg−1v if xg−1v 6= a

b if xg−1v = a.
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Therefore φ commutes with the action of G. Note that φ|Xa is the identity.

The map φ in turn induces a map between the cocycles which we shall now describe. Let

M ∈MG
Xa

be a Markov cocycle. Consider M ′ : ∆X −→ R given by

M ′(x, y) := M(φ(x), φ(y)).

We will prove that M ′ ∈MG
X .

Cocycle condition: If (x, y), (y, z) ∈ ∆X then

M ′(x, y) +M ′(y, z) = M(φ(x), φ(y)) +M(φ(y), φ(z)) = M(φ(x), φ(z)) = M ′(x, z).

Markov condition: If (x, y), (z, w) ∈ ∆X are Markov-similar then (φ(x), φ(y)), (φ(z), φ(w)) ∈ ∆Xa

are Markov-similar as well implying M(φ(x), φ(y)) = M(φ(z), φ(w)) and thus

M ′(x, y) = M(φ(x), φ(y))

= M(φ(z), φ(w))

= M ′(z, w)

which verifies the Markov condition for M ′.

G-invariance condition: Since φ commutes with the action of G, for all g ∈ G

M ′(gx, gy) = M(φ(gx), φ(gy)) = M(g(φ(x)), g(φ(y))) = M(φ(x), φ(y)) = M ′(x, y).

Hence M ′ ∈MG
X . Moreover if M ∈ GG

Xa
with a G-invariant nearest neighbour interaction V , then

for all (x, y) ∈ ∆X

M ′(x, y) = M(φ(x), φ(y)) =
∑

A⊂V finite

V ([φ(y)]A)− V ([φ(x)]A)

proving that V ◦ φ is a G-invariant nearest neighbour interaction for M ′.

Thus the map φ? : MG
Xa
−→MG

X given by

φ?(M)(x, y) := M(φ(x), φ(y))

satisfies φ?(GG
Xa

) ⊂ GG
X . Moreover since φ|Xa is the identity map on Xa therefore φ?(M)|∆Xa

= M

for all M ∈MG
Xa

proving F ◦ φ? is the identity map on MXa .

Given a G-invariant topological Markov field Y ⊂ X there is always a linear map F : MG
X −→

MG
Y given by F (M) := M |∆Y

and F (GG
X) ⊂ GG

Y . However if Y cannot be obtained by a sequence

of strong config-folds starting with X, then this map need not be surjective. Indeed, consider the

following example:
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Let H be the graph given by Figure 3.2. Fix some d ∈ N. Let X := Hom(Zd,H) and

Y := Hom(Zd, C3). Since there is a graph embedding from the 3-cycle C3 to H it follows that

Hom(Zd, C3) ⊂ Hom(Zd,H). Let Zd denote the group of translations of the Zd lattice. Since the

top vertex of H is a safe symbol for Hom(Zd,H) it follows from the strong Hammersley-Clifford

theorem (Theorem 2.2.3) that MZd

X = GZd

X . Therefore F (MZd

X ) ⊂ GZd

Y . However by Proposition

2.4.3, GZd

Y ( MZd

Y . It follows that F (MZd

X ) ( MZd

Y .

3.3 The Main Results

Theorem 3.3.1. Let G = (V, E) be a bipartite graph, A a finite alphabet and X ⊂ AV a Hammersley-

Clifford n.n.constraint space . Then the strong config-folds and strong config-unfolds of X are also

Hammersley-Clifford.

The G-invariant version of Theorem 3.3.1 holds as well.

Theorem 3.3.2. Let G = (V, E) be a bipartite graph, A a finite alphabet, G ⊂ Aut(G) a subgroup

and X ⊂ AV a G-Hammersley-Clifford n.n.constraint space. Then the strong config-folds and strong

config-unfolds of X are also G-Hammersley-Clifford.

We know that all frozen spaces of configurations are G-Hammersley-Clifford for all subgroups

G ⊂ Aut(G). We can construct many more examples of Hammersley-Clifford spaces by using these

theorems.

1. N.N.Constraint space with a safe symbol.

By Proposition 3.2.4 starting with an n.n.constraint space with a safe symbol ? we can

strong config-fold all the symbols one by one into the symbol ? resulting in {?}V which is

frozen. Thus these theorems generalise Theorem 2.2.3 in the case when G is a bipartite graph.

Furthermore any closed configuration space which can be strongly config-folded into a space

with a safe symbol is still Hammersley-Clifford. For instance given the graph H′ in Figure

3.3, even though Hom(G,H′) does not have any safe symbol, it is G-Hammersley-Clifford for

any subgroup G ⊂ Aut(G).

2. Hom(G, Edge) where Edge consists of two vertices 0 and 1 connected by a single edge.

By these theorems a closed configuration space which can be strongly config-folded into

Hom(G, Edge) is still Hammersley-Clifford. For example if H is the graph given by Figure

3.4 then it can be folded to the graph Edge and hence Hom(G,H) is G-Hammersley-Clifford

for any subgroup G ⊂ Aut(G).

3. Consider the space Hom(G,Hn,m) where Hn,m is a graph with vertices VHn,m := {1, 2, . . . , n}
and edges given by (i, j) ∈ EHn,m if and only if |i− j| ≤ m.
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Figure 3.4: A Graph which Folds to the Edge Graph
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Figure 3.5: H9,2

The sequence of folds 1 to 2, 2 to 3, 3 to 4, . . . , n − 1 to n yields the space {n}G from

Hom(G,Hn,m) proving that it is G-Hammersley-Clifford for any subgroup G ⊂ Aut(G). A

graph H is called dismantlable if there exists a sequence of folds on the graph leading to a

single vertex. By these theorems, if H is dismantlable then Hom(G,Hn,m) is G-Hammersley-

Clifford for any subgroup G ⊂ Aut(G).

Note that although these are homomorphism spaces, the theorems are true in the general setting

of closed configuration spaces. These specific examples have been chosen for convenience.

3.3.1 A Concrete Example

We will first work out the following example to illustrate the key ideas of the proof.

Suppose H and H′ are graphs given by Figure 3.6. Let X := Hom(Z2,H). Then by strong

config-folding the vertex a into the vertex b we obtain the space Xa := Hom(Z2,H′).
Note that X does not have any safe symbol but b is a safe symbol for Xa. Let Z2 denote the

subgroup of all translations of Z2. By the strong Hammersley-Clifford theorem (Theorem 2.2.3)

Xa is Z2-Hammersley-Clifford. We will prove that X is Z2-Hammersley-Clifford.

Let M ∈MZ2

X be a shift-invariant Gibbs cocycle. Then M |Xa is a shift-invariant Markov cocycle

on Xa and hence a Gibbs cocycle with some shift-invariant nearest neighbour interaction, which

b

c

d

a 

b

c

d

Figure 3.6: Graphs H and H′
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we will call V .

For e, f, g, h, i ∈ VH and ~v ∈ Z2 consider the configuration x =
[ e
f g h
i

]~v
given by

xu :=



g if u = ~v

e if u = ~v + (0, 1)

f if u = ~v − (1, 0)

h if u = ~v + (1, 0)

i if u = ~v − (0, 1)

b if ~u ∈ D1(~v)c.

For all ~v ∈ Z2 let x~v =
[

d
d a d
d

]~v
. Consider a shift-invariant nearest neighbour interaction V ′ as

follows:

1. If ~v ∼ ~w ∈ Z2, [e, f ]{~v,~w} ∈ L{~v,~w}(Xa) then

V ′([e, f ]{~v,~w}) := V ([e, f ]{~v,~w}) and

V ′([e]~v) := V ([e]~v). (3.3.1)

2. The interaction between a and d is 0, that is, for all ~v ∼ ~w ∈ Z2

V ′([a, d]{~v,~w}) := 0. (3.3.2)

3. The single site interaction for [a]~v for all ~v ∈ Z2 is given by

V ′([a]~v) := M

([
d

d b d
d

]~v
,
[

d
d a d
d

]~v)
+ V ([b]~v) + V ([b, d]{~v,~v+(1,0)}) + V ([b, d]{~v,~v−(1,0)})

+V ([b, d]{~v,~v+(0,1)}) + V ([b, d]{~v,~v−(0,1)}).

By (3.3.1) and (3.3.2) this implies that the pair

([
d

d b d
d

]~v
,
[

d
d a d
d

]~v)
is V ′-good.

4. Let

V ′([a, c]{~v,~v+(1,0)}) := M

([
d

d a d
d

]~v
,
[

d
d a c
d

]~v)
+ V ([d]~v+(1,0))− V ([c]~v+(1,0))

+V ([d, b]{~v+(1,0),~v+(1,1)}) + V ([d, b]{~v+(1,0),~v+(2,0)})

+V ([d, b]{~v+(1,0),~v+(1,−1)})− V ([c, b]{~v+(1,0),~v+(1,1)})

−V ([c, b]{~v+(1,0),~v+(2,0)})− V ([c, b]{~v+(1,0),~v+(1,−1)}).
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By (3.3.1) and (3.3.2) the previous equation implies that the pair

([
d

d a d
d

]~v
,
[

d
d a c
d

]~v)
is V ′-

good. Similarly we can define V ′([a, c]{~v,~v−(1,0)}), V
′([a, c]{~v,~v+(0,1)}) and V ′([a, c]{~v,~v−(0,1)}),

the corresponding expressions of which will imply that the pairs

([
d

d a d
d

]~v
,
[

d
c a d
d

]~v)
,([

d
d a d
d

]~v
,
[ c
d a d
d

]~v)
,

([
d

d a d
d

]~v
,
[

d
d a d
c

]~v)
are V ′-good.

Since V and M are shift-invariant it follows that V ′ is also shift-invariant. We want to prove

that V ′ is an interaction for M . Equivalently we want to prove that all asymptotic pairs are V ′-

good. Let (x, y) ∈ ∆X . Since any appearance of a in the elements of X can be replaced by b, by

replacing all the a’s outside the set of sites where x and y differ and its boundary we can obtain a

pair (x1, y1) ∈ ∆X which is Markov-similar to (x, y) and has finitely many a’s. Thus by Proposition

3.2.1 it is sufficient to prove that pairs (x, y) ∈ ∆X with finitely many a’s are V ′-good. Since the

a’s can be replaced by b’s one by one and any pair in ∆Xa is V ′-good by Lemma 3.2.2 it is sufficient

to prove that pairs in X in which a single a is replaced by b are V ′-good. Since a can be folded into

b and ∂{a} = {c, d} any such pair is Markov-similar to a pair of the type

([ e
f a h
i

]~v
,
[ e
f b h
i

]~v)
for

some ~v ∈ Z2 and e, f, g, h, i ∈ {c, d}.
The pairs([ e

f a h
i

]~v
,
[

d
f a h
i

]~v)
,

([
d

f a h
i

]~v
,
[

d
d a h
i

]~v)
,

([
d

d a h
i

]~v
,
[

d
d a d
i

]~v)
,

([
d

d a d
i

]~v
,
[

d
d a d
d

]~v)
are Markov-similar to([ e

d a d
d

]~v
,
[

d
d a d
d

]~v)
,

([
d

f a d
d

]~v
,
[

d
d a d
d

]~v)
,

([
d

d a h
d

]~v
,
[

d
d a d
d

]~v)
,

([
d

d a d
i

]~v
,
[

d
d a d
d

]~v)
respectively. Since e, f, g, h, i ∈ {c, d}, these pairs are V ′-good. Thus each adjacent pair in the

chain [ e
f a h
i

]~v
,
[

d
f a h
i

]~v
,
[

d
d a h
i

]~v
,
[

d
d a d
i

]~v
,
[

d
d a d
d

]~v
,
[

d
d b d
d

]~v
,
[ e
f b h
i

]~v
is V ′-good. By Corollary 3.2.2 the pair

([ e
f a h
i

]~v
,
[ e
f b h
i

]~v)
is V ′-good. This completes the proof.

3.3.2 Proof of Theorems 3.3.1 and 3.3.2

We will now prove Theorems 3.3.1 and 3.3.2. The proof will give an explicit way of computing the

interaction as well. It should also be noted that Theorem 3.3.1 is a special case of Theorem 3.3.2.

Yet we separate the proofs so as to separate the various complications.

Proof of Theorem 3.3.1. The bulk of the proof lies in showing that the strong config-unfolds of
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Hammersley-Clifford spaces are Hammersley-Clifford. We will first prove that the strong config-

folds of a Hammersley-Clifford space are Hammersley-Clifford. Let X ⊂ AV be Hammersley-

Clifford and Xa be its strong config-fold. Using Proposition 3.2.5 in the case where G = {id|G}
we obtain a surjective map F : MX −→MXa such that F (GX) = GXa . Since X is Hammersley-

Clifford, MX = GX . Hence

MXa = F (MX) = F (GX) = GXa

proving that Xa is Hammersley-Clifford.

Now we will prove that strong config-unfolds of Hammersley-Clifford spaces are Hammersley-

Clifford spaces as well. Let X ⊂ AV be an n.n.constraint space and Xa be a strong config-fold of

X where a is strongly config-folded into b. Let the set of nearest neighbour constraints of X be

given by the set FX . Suppose Xa is Hammersley-Clifford.

Let M ∈ MX be a Markov cocycle. Since Xa is Hammersley-Clifford M |∆Xa
∈ GXa . Let

V be a corresponding nearest neighbour interaction. We shall now construct a nearest neighbour

interaction V ′ for M . The idea is the following:

Since we have a nearest neighbour interaction for M |∆Xa
we will change asymptotic pairs in

X to asymptotic pairs in Xa using the fewest possible distinct single site changes. These distinct

single site changes will correspond to patterns on edges and vertices helping us build V ′. If we use

the single site changes which involve blindly changing the a’s into b’s we will incur a large number

of such changes; instead we will use a smaller number as described by the following lemma.

Lemma 3.3.3 (Construction of special configurations). Let X be an n.n.constraint space and Xa

be a strong config-fold of X where the symbol a is strongly config-folded into the symbol b. Let

V1 :=
{
v ∈ V | there exists w ∼ v such that [a, a]{v,w} ∈ L{v,w}(X)

}
and

V2 :=
{
v ∈ V \ V1 | [a]{v} ∈ L{v}(X)

}
.

For all v ∈ V1 ∪ V2 there exists xv ∈ X such that

1. If v ∈ V1 then xvv := a and xv|D2(v)\{v} := b.

2. If v ∈ V2 then xvv := a and xv|∂D1(v) := b.

Moreover θvb (xv) ∈ Xa and if w1, w2, w3, . . . wr ∼ v and c1, c2, . . . , cr ∈ A such that [a, ci]{v,wi} ∈
L{v,wi}(X) then θw1,w2,...,wr

c1,c2,...,cr (xv) ∈ X.

Proof. Let v ∈ V1. By (3.2.3) [a, b]{v,w} ∈ L{v,w}(X) for all w ∼ v. Again by (3.2.3) it follows that

[b, b]{w,w1} ∈ L{w,w1}(X) for all w,w1 ∈ V such that w ∼ v and w1 ∼ w. Then none of the patterns
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from FX , the nearest neighbour constraint set for X appear in αv ∈ AD2(v) given by

αvu :=

a if u = v

b if u ∈ D2(v) \ {v}.

For v ∈ V2 there exists x1 ∈ X such that x1
v = a. For all w,w1 ∈ V such that w ∼ v and w1 ∼ w

(3.2.3) implies that [x1
w, b]{w,w1} ∈ L{w,w1}(X). Then none of the patterns from FX appear in

αv ∈ AD2(v) given by

αvu :=

x1
u if u ∈ D1(v)

b if u ∈ D2(v) \D1(v).

Fix v ∈ V1∪V2. By (3.2.4) there exists x ∈ X such that x|∂D1(v) = b. Moreover since a strongly

config-folds into b we can assume that x ∈ Xa. Consider xv ∈ AV given by

xvu :=

αvu if u ∈ D2(v)

xu if u ∈ D1(v)c.

The configurations xv satisfy Conclusions (1) and (2) of this lemma. Since each edge in G either

lies completely in D2(v) or in D1(v)c, no subpattern of xv belongs to FX . Therefore xv ∈ X.

Let v ∈ V1 ∪ V2. Since x ∈ Xa, a appears in xv only at v . Moreover since a strongly

config-folds into b by (3.2.2), θvb (xv) ∈ Xa. Let w1, w2, w3, . . . wr ∼ v and c1, c2, . . . , cr ∈ A such

that [a, ci]{v,wi} ∈ L{v,wi}(X) for all 1 ≤ i ≤ r. Because the graph is bipartite wi � wj for all

1 ≤ i, j ≤ r. By (3.2.3) for all w′ ∼ wi and 1 ≤ i ≤ r, [ci, b]{wi,w′} ∈ L{wi,w′}(X). By Proposition

3.1.3 θw1,w2,...,wr
c1,c2,...,cr (xv) ∈ X.

We will now construct an interaction via the following technical lemma.

Lemma 3.3.4 (Construction of V ′). Let X be an n.n.constraint space and Xa be a strong config-

fold of X where the symbol a is strongly config-folded into the symbol b. Consider sets V1,V2 ⊂ V
and for all v ∈ V1 ∪ V2, configurations xv ∈ X satisfying the conclusions of Lemma 3.3.3. Let

M ∈MX be a Markov cocycle on X such that M |∆Xa
is a Gibbs cocycle with interaction V . Then

there exists a unique nearest neighbour interaction V ′ on X which satisfies:

If v ∼ w ∈ V and [c, d]{v,w} ∈ L{v,w}(Xa) then

V ′([c, d]{v,w}) = V ([c, d]{v,w}) and (3.3.3)

V ′([c]){v} = V ([c]{v}). (3.3.4)

For v ∈ V1 ∪ V2 and w ∼ v

V ′([xv]{v,w}) = 0. (3.3.5)
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such that the following pairs are V ′-good:

1. (x̃, ỹ) ∈ ∆Xa.

2. (θvb (xv), xv) for v ∈ V1 ∪ V2.

3. (θwc (xv), xv) for v ∈ V1 ∪ V2, w ∼ v and c ∈ A \ {a} satisfying [a, c]{v,w} ∈ L{v,w}(X).

4. (θwa (xv), xv) for all v ∈ V1 ∩ P1, w ∼ v satisfying [a, a]{v,w} ∈ L{v,w}(X).

In the following proof the reader is encouraged to refer to the statement of Lemma 3.3.3 for

information about configurations xv.

Proof of Lemma 3.3.4. We will begin by proving uniqueness of the interaction assuming its exis-

tence. Consider a nearest neighbour interaction V ′ on X which satisfies the conclusion of this

lemma. We will prove the uniqueness by expressing V ′ in terms of the cocycle M and V .

Since V ′ satisfies (3.3.3), (3.3.4) and (3.3.5) we have to prove that the following can be expressed

in terms of M and V :

(a) For all v ∈ V1 ∪ V2, the value V ′([a]v),

(b) For all v ∈ V1 ∪ V2, w ∼ v and c ∈ A \ {xvw, a} such that [a, c]{v,w} ∈ L{v,w}(X), the value

V ′([a, c]{v,w}) and

(c) For all v ∈ V1 ∩ P1, w ∼ v such that [a, a]{v,w} ∈ L{v,w}(X), the value V ′([a, a]{v,w}).

Proof for part (a): Let v ∈ V1 ∪V2. Since the pair (θvb (xv), xv) ((2) in the statement of the lemma)

is V ′-good by rearranging the expression for M(θvb (xv), xv) we get that

V ′([a]v) = V ′([xv]v)

= M(θvb (xv), xv) + V ′([θvb (xv)]v) +
∑
w:w∼v

V ′
(
[θvb (xv)]{v,w}

)
−(

∑
w:w∼v

V ′
(
[xv]{v,w}

)
). (3.3.6)

Now we will express the right hand side of this expression in terms of M and V . Since θvb (xv) ∈ Xa

V ′([θvb (xv)]{v,w}) = V ([θvb (xv)]{v,w}) and V ′([θvb (xv)]v) = V ([θvb (xv)]v). By (3.3.5), V ′([xv]{v,w}) = 0.

Putting all this together we get

V ′([a]v) = M(θvb (xv), xv) + V ([θvb (xv)]v) +
∑
w:w∼v

V ([θvb (xv)]{v,w}). (3.3.7)

Proof for part (b): Consider v ∈ V1∪V2, w ∼ v and c ∈ A\{a, xvw} such that [a, c]{v,w} ∈ L{v,w}(X).

Since the pair (θwc (xv), xv) ((3) in the statement of the lemma) is V ′-good by rearranging the
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expression for M(xv, θwc (xv)) we get

V ′([a, c]{v,w}) = V ′([θwc (xv)]{v,w})

= M(xv, θwc (xv)) +
∑

w′:w′∼w
V ′([xv]{w′,w}) + V ′([xv]w)

−

 ∑
w′:w′∼w,w′ 6=v

V ′([θwc (xv)]{w′,w})

− V ′([θwc (xv)]w). (3.3.8)

We will now express the right hand side of this expression in terms of M and V .

By (3.3.5), V ′([xv]{v,w}) = 0. We know that (θwc (xv))w, x
v
w 6= a and if w′ ∼ w, w′ 6= v then

w′ ∈ ∂D1(v) and so (θwc (xv))w′ = xvw′ = b. Therefore by (3.3.3) and (3.3.4)

V ′([xv]{w′,w}) = V ([xv]{w′,w}), V
′([θwc (xv)]{w′,w}) = V ([θwc (xv)]{w′,w})

and

V ′([xv]w) = V ([xv]w), V ′([θwc (xv)]w) = V ([θwc (xv)]w).

Putting all this together we get

V ′([a, c]{v,w}) = M(xv, θwc (xv)) +
∑

w′:w′∼w,w′ 6=v

(
V ([xv]{w′,w})− V ([θwc (xv)]{w′,w})

)
+V ([xv]w)− V ([θwc (xv)]w). (3.3.9)

Proof for part (c): Consider v ∈ V1 ∩ P1 and w ∼ v such that [a, a]{v,w} ∈ L{v,w}(X). Since the

pair (θwa (xv), xv) ((4) in the statement of the lemma) is V ′-good by rearranging the expression for

M(xv, θwa (xv)) we get that

V ′([a, a]{v,w}) = V ′([θwa (xv)]{v,w})

= M(xv, θwa (xv)) +
∑

w′:w′∼w
V ′([xv]{w′,w}) + V ′([xv]w)

−

 ∑
w′:w′∼w,w′ 6=v

V ′([θwa (xv)]{w′,w})

− V ′([θwa (xv)]w). (3.3.10)

We will now express the right hand side of this expression in terms of M and V . By (3.3.5),

V ′([xv]{v,w}) = 0. Since v ∈ V1, for w′ ∼ w such that w′ 6= v we know that xvw = xvw′ = b 6= a.

Therefore by (3.3.3) and (3.3.4)

V ′([xv]{w′,w}) = V ([xv]{w′,w})
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and

V ′([xv]w) = V ([xv]w).

Since [a, a] ∈ L{v,w}(X) therefore v, w ∈ V1 and xvw′ = xww′ = b for all w′ ∼ w, w′ 6= v. Then by

(3.3.5)

V ′([θwa (xv)]{w′,w}) = V ′([b, a]{w′,w}) = V ′([xw]{w′,w}) = 0.

By (3.3.7) we get that

V ′([θwa (xv)]w) = V ′([a]w) = M(θwb (xw), xw) + V ([θwb (xw)]w) +
∑

w′:w′∼w
V ([θwb (xw)]{w,w′}).

Putting all this together, we get

V ′([a, a]{v,w}) = M(xv, θwa (xv)) +
∑

w′:w′∼w,w′ 6=v
V ([xv]{w′,w}) + V ([xv]w)−M(θwb (xw), xw)

−V ([θwb (xw)]w)− (
∑

w′:w′∼w
V ([θwb (xw)]{w,w′})). (3.3.11)

This completes proof for uniqueness. It follows from the proofs that given an interaction V ′

which satisfies (3.3.3), (3.3.4) and (3.3.5), Equations(3.3.7), (3.3.9) and (3.3.11) are satisfied if and

only if the pairs listed in (1), (2), (3) and (4) are V ′-good.

Consider a nearest neighbour interaction V ′ on X given by the following:

(i) If v ∼ w ∈ V and [c, d]{v,w} ∈ L{v,w}(Xa) then V ′([c, d]v,w) is given by (3.3.3)

(ii) and V ′([c]v) is given by (3.3.4).

(iii) If v ∈ V1 ∪ V2 and w ∼ v, then V ′([xv]{v,w}) is given by (3.3.5).

(iv) If v ∈ V1 ∪ V2, the value V ′([a]v) is given by (3.3.7).

(v) If v ∈ V1 ∪ V2, w ∼ v and c ∈ A \ {xvw, a} such that [a, c]{v,w} ∈ L{v,w}(X), the value

V ′([a, c]{v,w}) is given by (3.3.9).

(vi) If v ∈ V1 ∩ P1, w ∼ v such that [a, a]{v,w} ∈ L{v,w}(X), the value V ′([a, a]{v,w}) is given by

(3.3.11).

By the preceding paragraph the proof is complete.

Now we will reap the benefits of the previous lemma. The following lemma explains why the

weak conclusions of Lemma 3.3.4 are sufficient and completes the proof of Theorem 3.3.1.
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Lemma 3.3.5. Let X be an n.n.constraint space and Xa be a strong config-fold of X where the

symbol a is strongly config-folded into the symbol b. Let P1, P2 be the partite classes of V and

consider V1,V2 ⊂ V and xv ∈ X for all v ∈ V1 ∪ V2 satisfying the conclusion of Lemma 3.3.3.

Let M ∈ MX be a Markov cocycle on X such that M |∆Xa
is a Gibbs cocycle with some nearest

neighbour interaction V and V ′ be an interaction on X as obtained in Lemma 3.3.4. Then M ∈ GX

is Gibbs with nearest neighbour interaction V ′.

Proof. We will use the V ′-good pairs guaranteed by Lemma 3.3.4 as steps in proving the following

pairs are V ′-good:

(a) Let x ∈ X and v ∈ V1 ∪ V2 such that xv = a and xw 6= a for all w ∼ v. Then (x, θvb (x)) is

V ′-good.

(b) Let x ∈ X and v ∈ V1 ∩ P1 and w ∼ v such that xv = xw = a. Then (x, θvb (x)) is V ′-good.

(c) All asymptotic pairs (x, y) ∈ ∆X are V ′-good.

Given an asymptotic pair, Statements (a) and (b) allow replacement of the a’s by b’s giving us a

pair in ∆Xa . From Conclusion (1) in Lemma 3.3.4 we know that all pairs in ∆Xa are V ′-good.

Since the relation V ′-good is an equivalence relation this proves Statement (c) thereby completing

the proof.

Consider any v ∈ V1 ∪ V2 and x ∈ X such that xv = a. Let

∂{v} = {w1, w2, . . . wn}.

Since for all 1 ≤ r ≤ n, [a, xwr ]{v,wr} ∈ L{v,wr}(X), Lemma 3.3.3 implies that

θwr,wr+1...,wn
xwr ,xwr+1 ,...,xwn

(xv) ∈ X.

Let x1 = θw1,w2,...,wn
xw1 ,xw2 ,...,xwn

(xv). The pair (x, θvb (x)) is Markov-similar to (x1, θvb (x1)) with A := {v}.
Note

θw1,w2,...,wr
xvw1

,xvw2
,...,xvwr

(x1) = θwr+1...,wn
xwr+1 ,...,xwn

(xv) ∈ X

and that x1 and xv differ only on ∂{v}.

In the following we will remove a’s in configurations from those vertices which are isolated from

other a’s.

Proof of Statement (a): Consider the sequence

x1, θw1
xvw1

(x1), θw1,w2
xvw1

,xvw2
(x1), . . . , θw1,w2,...,wn

xvw1
,xvw2

,...,xvwn
(x1) = xv, θvb (xv), θvb (x1).

Here single site changes have been made on ∂{v} taking us from x1 to xv. Then the symbol at v
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has been changed to obtain θvb (xv). In the last step θvb (xv) has been changed on ∂{v} to obtain

θvb (x1).

Note that each

(θw1,w2,...,wr
xvw1

,xvw2
,...,xvwr

(x1), θ
w1,w2,...,wr+1
xvw1

,xvw2
,...,xvwr+1

(x1))

is Markov-similar to (θ
wr+1

x1
wr+1

(xv), xv) for all 0 ≤ r ≤ n− 1 with A := {wr+1}. By Conclusion (3) in

Lemma 3.3.4, (θ
wr+1

x1
wr+1

(xv), xv) is V ′-good for all 0 ≤ r ≤ n−1. Thus by Corollary 3.2.2, we get that

(x1, xv) is V ′-good. By Conclusion (2) in Lemma 3.3.4 and symmetry of the relation V ′-good we get

that (xv, θvb (xv)) is V ′-good. Since θvb (xv), θvb (x1) ∈ Xa, Conclusion (1) in Lemma 3.3.4 implies that

(θvb (xv), θvb (x1)) is V ′-good. Stringing these together by Corollary 3.2.2 we arrive at (x1, θvb (x1))

being V ′-good. But (x1, θvb (x1)) is Markov-similar to (x, θvb (x)). Therefore by Proposition 3.2.1 we

get that (x, θvb (x)) is V ′-good.

In the next step we remove the a’s which are not isolated.

Proof of Statement (b): We construct a sequence from x to θvb (x) in three parts. In the first part

single site changes will be made on ∂{v} taking us from x1 to xv. In the second part the symbol

at v will be changed to obtain θvb (xv). In the last part single site changes will be made on ∂{v} to

obtain θvb (x1) from θvb (xv).

Consider the sequence

(x1, θw1
xvw1

(x1), θw1,w2
xvw1

,xvw2
(x1), . . . , θw1,w2,...,wn

xvw1
,xvw2

,...,xvwn
(x1) = xv),

(xv, θvb (xv)),

(θvb (xv), θw1

x1
w1

(θvb (xv)), θw1,w2

x1
w1
,x1

w2

(θvb (xv)), . . . , θw1,w2,...,wn

x1
w1
,x1

w2
,...,x1

wn
(θvb (xv)) = θvb (x1)).

In the first part of the sequence notice that

(θw1,w2,...,wr
xvw1

,xvw2
,...,xvwr

(x1), θ
w1,w2,...,wr+1
xvw1

,xvw2
,...,xvwr+1

(x1))

is Markov-similar to (θ
wr+1

x1
wr+1

(xv), xv) for all 0 ≤ r ≤ n − 1 with A := {wr+1}. If for some 0 ≤

r ≤ n − 1, x1
wr+1

6= a then by Conclusion (3) in Lemma 3.3.4 we get that (θ
wr+1

x1
wr+1

(xv), xv) is V ′-

good. If for some 0 ≤ r ≤ n − 1, x1
wr+1

= a then by Conclusion (4) in Lemma 3.3.4 we get that

(θ
wr+1

x1
wr+1

(xv), xv) is V ′-good. Proposition 3.2.1 implies that

(θw1,w2,...,wr
xvw1

,xvw2
,...,xvwr

(x1), θ
w1,w2,...,wr+1
xvw1

,xvw2
,...,xvwr+1

(x1))

is V ′-good for all 0 ≤ r ≤ n − 1. By Corollary 3.2.2, we get that (x1, xv) is V ′-good and we are

done with the first part of the sequence.

For the second part of the sequence by Conclusion (2) in Lemma 3.3.4 and symmetry of the
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relation V ′-good we get that (xv, θvb (xv)) is V ′-good.

For the third part of the sequence the asymptotic pair

(θw1,w2,...,wr

x1
w1
,x1

w2
,...,x1

wr
(θvb (xv)), θ

w1,w2,...,wr+1

x1
w1
,x1

w2
,...,x1

wr+1

(θvb (xv)))

is Markov-similar to (θvb (xv), θ
wr+1

x1
wr+1

(θvb (xv))) for all 0 ≤ r ≤ n− 1 with A = {wr+1}.

If for some 0 ≤ r ≤ n−1, x1
wr+1

6= a then (θvb (xv), θ
wr+1

x1
wr+1

(θvb (xv)) ∈ Xa and by Conclusion (1) in

Lemma 3.3.4 we get that (θvb (xv), θ
wr+1

x1
wr+1

(θvb (xv))) is V ′-good. Since v ∈ V1, xv|D2(v)\{v} = b. Thus

if for some 0 ≤ r ≤ n− 1, x1
wr+1

= a then

(θ
wr+1

x1
wr+1

(θvb (xv)), θvb (xv)) = (θwr+1
a (θvb (xv)), θ

wr+1

b (θwr+1
a (θvb (xv)))

and (θ
wr+1
a (θvb (xv)))w′ = b 6= a for all w′ ∼ wr+1. By Statement (a) in the proof of this lemma we

get that (θ
wr+1
a (θvb (xv)), θ

wr+1

b (θ
wr+1
a (θvb (xv))) is V ′-good. By symmetry of the relation V ′-good we

get that (θvb (xv), θ
wr+1

x1
wr+1

(θvb (xv))) is V ′-good in this case as well.

Thus for all 0 ≤ r ≤ n − 1 we find that (θvb (xv), θ
wr+1

x1
wr+1

(θvb (xv))) is V ′-good. Using Corollary

3.2.2 we find that (θvb (xv), θvb (x1)) is V ′-good.

So we have proven that (x1, xv), (xv, θvb (xv)), (θvb (xv), θvb (x1)) are V ′-good. Stringing them by

Corollary 3.2.2 we get that (x1, θvb (x1)) is V ′-good. But (x1, θvb (x1)) is Markov-similar to (x, θvb (x)).

Therefore by Proposition 3.2.1 we get that (x, θvb (x)) is V ′-good.

The previous two statements give us the freedom to change the a’s into b’s. Now we will use

them to prove the last statement.

Proof of Statement (c): Consider an asymptotic pair (x, y) ∈ ∆X . Let

F := {v ∈ V | xv 6= yv}

and x1, y1 ∈ AV be obtained by replacing the a’s outside F ∪ ∂F by b’s, that is

x1
u :=

xu if u ∈ F ∪ ∂F or xu 6= a

b otherwise

and

y1
u :=

yu if u ∈ F ∪ ∂F or yu 6= a

b otherwise.

By (3.2.2) x1, y1 ∈ X. Since x = y on F c, it follows that (x, y) and (x1, y1) are Markov-similar but
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there are only finitely many vertices where x1 and y1 equal a. Let

{v1, v2, . . . , vr} := {v ∈ P1 | x1
v = a}

{w1, w2, . . . , wr′} := {w ∈ P1 | y1
w = a}

{vr+1, vr+2 . . . , vr+k} := {v ∈ P2 | x1
v = a}

{wr′+1, wr′+2 . . . , wr′+k′} := {w ∈ P2 | y1
w = a}

index the vertices with a in x1 and y1. By Lemma 3.3.3 the configurations θv1,v2...,vi
b,b,...,b (x1) and

θ
w1,w2...,wi′
b,b,...,b (y1) are elements of X for all 1 ≤ i ≤ r + k and 1 ≤ i′ ≤ r′ + k′. Therefore we can

consider the sequence (3.3.12 to 3.3.16) in X:

We begin by replacing the a’s in x1 from the partite class P1 by b’s.

(x1, θv1
b (x1), θv1,v2

b,b (x1), . . . , θv1,v2,...,vr
b,b,...,b (x1)). (3.3.12)

In the resulting configuration θv1,v2,...,vr
b,b,...,b (x1) adjacent vertices cannot both have the symbol a; the

a’s left in the configuration x1 are changed to b’s.

(θv1,v2,...,vr
b,b,...,b (x1), θ

v1,v2,...,vr+1

b,b,...,b (x1), . . . , θ
v1,v2,...,vr+k

b,b,...,b (x1)). (3.3.13)

After removing the a’s from x1 and y1 the configurations obtained are elements of Xa.

(θ
v1,v2,...,vr+k

b,b,...,b (x1), θ
w1,w2...,wr′+k′
b,b,...,b (y1)). (3.3.14)

Tactics from Sequences 3.3.12 and 3.3.13 are employed in reverse to obtain y1 starting with

θ
w1,w2...,wr′+k′
b,b,...,b (y1).

(θ
w1,w2...,wr′+k′
b,b,...,b (y1), θ

w1,w2...,wr′+k′−1

b,b,...,b (y1), . . . , θ
w1,w2...,wr′
b,b,...,b (y1)), (3.3.15)

(θ
w1,w2...,wr′
b,b,...,b (y1), θ

w1,w2...,wr′−1

b,b,...,b (y1), . . . , θw1
b (y1), y1). (3.3.16)

For all 1 ≤ i ≤ r, the vertex vi ∈ P1 and the symbol x1
vi = a. Thus by Statements (a) and (b)

in this proof we get that

(θv1,v2,...,vi
b,b,...,b (x1), (θ

v1,v2,...,vi+1

b,b,...,b (x1))

is V ′-good. Thus all adjacent pairs in the Sequence 3.3.12 are V ′-good

Notice that (θv1,v2,...,vr
b,b,...,b (x1))v 6= a for all v ∈ P1 and hence (θ

v1,v2,...,vr+i

b,b,...,b (x1))v 6= a for all 1 ≤ i ≤ k
and v ∈ P1. Now consider an adjacent pair in the Theorems 3.3.13,

(θ
v1,v2,...,vr+i

b,b,...,b (x1), θ
v1,v2,...,vr+i+1

b,b,...,b (x1))

for some 0 ≤ i ≤ k − 1. Since vr+i+1 ∈ P2 , (θ
v1,v2,...,vr+i

b,b,...,b (x1))w 6= a for all w ∼ vr+i+1. But
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(θ
v1,v2,...,vr+i

b,b,...,b (x1))vr+i+1 = a, therefore by Statement (a) we get that

(θ
v1,v2,...,vr+i

b,b,...,b (x1), θ
v1,v2,...,vr+i+1

b,b,...,b (x1))

is V ′-good.

Notice that (θ
v1,v2,...,vr+k

b,b,...,b (x1)), (θ
w1,w2,...,wr′+k′
b,b,...,b (y1)) ∈ Xa. Thus by Conclusion (1) in Lemma

3.3.4, we get that the Pair 3.3.14 is V ′-good.

The proof that the adjacent pairs listed in Sequences 3.3.15 and 3.3.16 are V ′-good is identical

to the proof for the Sequences 3.3.13 and 3.3.12 with an additional use of the symmetry of the

relation V ′-good.

Thus all adjacent pairs in Sequences 3.3.12-3.3.16 are V ′-good. By Corollary 3.2.2 we get that

(x1, y1) is V ′-good. But (x1, y1) is Markov-similar to (x, y). By Proposition 3.2.1 we have that

(x, y) is V ′-good. This completes the proof.

If G is finite then Theorem 3.3.2 follows immediately from Theorem 3.3.1: if V ′ is a nearest

neighbour interaction for a G-invariant Markov cocycle M then∑
g∈G gV

′

|G|

is a G-invariant nearest neighbour interaction for M . We will prove the following result which along

with Proposition 3.2.5 immediately implies Theorem 3.3.2.

Theorem 3.3.6. Let G = (V, E) be a bipartite graph and A a finite alphabet. Let G ⊂ Aut(G)

be a subgroup. Let X be a G-invariant n.n.constraint space and Xa be a strong config-fold of X.

Suppose M ∈MG
X is a G-invariant Markov cocycle. Then M ∈ GG

X if and only if M |∆Xa
∈ GG

Xa
.

Proof. By Proposition 3.2.5, M ∈ GG
X implies M |∆Xa

∈ GG
Xa

. We will prove the converse. Let

M ∈ MG
X such that M |∆Xa

∈ GG
Xa

. Let V be a G-invariant nearest neighbour interaction for

M |∆Xa
.

Mimicking the proof of Lemma 3.3.3 we will now obtain special configurations xv in aG-invariant

way.

Lemma 3.3.7. Let G ⊂ Aut(G) be a subgroup, X be a G-invariant n.n.constraint space and Xa be

a strong config-fold of X where the symbol a is strongly config-folded into the symbol b. Let

V1 := {v ∈ V | there exists w ∼ v such that [a, a]{v,w} ∈ L{v,w}(X)}

and

V2 := {v ∈ V \ V1 | [a]v ∈ Lv(X)}.

Then V1 and V2 are invariant under the action of G. Moreover for all v ∈ V1 ∪ V2 there exists

xv ∈ X satisfying the conclusions of Lemma 3.3.3 such that (gxv)|gD2(v) = xgv|gD2(v) for all g ∈ G.
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Proof. Since X is G-invariant it follows that the sets V1 and V2 are G-invariant.

Consider some v ∈ V1 and g ∈ G. Then by Lemma 3.3.3 there exists xv, xgv ∈ X such that

xvv = xgvgv = a and xv|D2(v)\{v} = xgv|D2(gv)\{gv} = b. Thus we find that (gxv)|gD2(v) = xgv|gD2(v).

Let v ∈ V2. Then for all w ∼ v, g ∈ G and c ∈ A \ {a} the pattern [a, c]{v,w} ∈ L{v,w}(X) if

and only if [a, c]{gv,gw} ∈ L{gv,gw}(X). Thus for all w ∼ v we can choose cv,w ∈ A \ {a} such that

[a, cv,w]{v,w} ∈ L{v,w}(X) and cv,w = cgv,gw for all g ∈ G. Note that since v ∈ V2 we know that

cv,w 6= a.

By (3.2.4) there exists x1,v ∈ X such that x1,v|∂D1(v) = b. Since a can be strongly config-folded

into the symbol b we can assume that x1,v ∈ Xa. Consider xv ∈ AV defined by

xvu :=


a if u = v

cv,u if u ∼ v

x1,v
u if u ∈ D1(v)c.

Note that a appears in xv only at the vertex v. Any edge (u1, u2) in G lies either completely in

D2(v) or in D1(v)c. If the edge lies in D1(v)c then [xv]{u1,u2} = x1,v
{u1,u2} ∈ L{u1,u2}(X). If the edge

is of the form (v, w) then [xv]{v,w} = [a, cv,w]{v,w} ∈ L{v,w}(X). If the edge is of the form (w,w′)

where w ∈ ∂{v} and w′ ∈ ∂D1(v) then [xv]{w,w′} = [cv,w, b]{w,w′}. Since (v, w) and (w,w′) are edges

in the graph G and [a, cv,w] ∈ L{v,w}(X) by (3.2.3) we know that [cv,w, b]{w,w′} ∈ L{w,w′}(X).

Thus we have proved for every edge (u1, u2) in G that [xv]{u1,u2} ∈ L{u1,u2}(X). Since X is an

n.n.constraint space we get that xv ∈ X.

Moreover for all v ∈ V2 and g ∈ G

(gxv)u =


a if u = gv

cv,g−1u if u ∼ gv

b if u ∈ ∂D1(gv)

and

(xgv)u =


a if u = gv

cgv,u = cv,g−1u if u ∼ gv

b if u ∈ ∂D1(gv),

that is, (gxv)|gD2(v) = xgv|gD2(v).

Thus the configurations xv satisfy Conclusions (1) and (2) of Lemma 3.3.3 and (gxv)|gD2(v) =

xgv|gD2(v) for all g ∈ G and v ∈ V1∪V2. The rest follows exactly as in the proof of Lemma 3.3.3.

Consider sets V1,V2 ⊂ V and for all v ∈ V configurations xv ∈ X as obtained by Lemma 3.3.7.

Then by Lemma 3.3.4 there exists a unique nearest neighbour interaction V ′ on X such that the

pairs listed in (1), (2), (3) and (4) listed in Lemma 3.3.4 are V ′-good. By Lemma 3.3.5 we get that
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V ′ is a nearest neighbour interaction for M . We will prove that the interaction V ′ is G-invariant.

For this we will invoke the uniqueness of the interaction satisfying the conclusions of Lemma 3.3.4.

Let g ∈ G. gV ′ is a nearest neighbour interaction corresponding to gM = M . Thus the pairs

listed in (1), (2), (3) and (4) in Lemma 3.3.4 are gV ′-good. Since V is G-invariant, gV ′|LXa
=

gV = V . Hence gV ′ satisfies (3.3.3), (3.3.4).

If v ∈ V1 ∪ V2 then we know from Lemma 3.3.7 that (gxv)|gD1(v) = xgv|gD1(v). Thus if w ∼ v

since V ′ satisfies (3.3.5) we get that

gV ′([xv]{v,w}) = V ′([xvv, x
v
w]{g−1v,g−1w}) = V ′([xg

−1v
g−1v

, xg
−1v
g−1w

]{g−1v,g−1w}) = 0.

Thus the interaction gV ′ satisfies (3.3.5). We have seen that the interaction gV ′ is a nearest

neighbour interaction which satisfies (3.3.3), (3.3.4) and (3.3.5) such that the pairs listed in (1),

(2), (3) and (4) in Lemma 3.3.4 are gV ′-good. By Lemma 3.3.4 we know that such an interaction

is unique. Thus gV ′ = V ′ and M ∈ GG
X .

This leads us to the following corollary:

Corollary 3.3.8. Let G = (V, E) be a bipartite graph and A a finite alphabet. Let G ⊂ Aut(G) be a

subgroup. Let X be a G-invariant n.n.constraint space and Xa be a strong config-fold of X. Then

MG
X/G

G
X is isomorphic to MG

Xa
/GG

Xa
.

Clearly this corollary subsumes Theorem 3.3.2 and implies Theorem 1.2.1. Thereby to under-

stand the difference between Markov and Gibbs cocycles it is sufficient to study the cocycles over

closed configuration spaces which cannot be strongly config-folded any further.

Also this corollary is most relevant when the dimension of the quotient space MG
X/G

G
X is finite.

For example this holds in the following two situations:

1. The underlying graph G is finite.

2. The underlying graph G is Zd for some dimension d, G is the group of translations on Zd and

the space X has the pivot property (Proposition 2.2.6).

Proof. By Proposition 3.2.5 the map F : MG
X −→MG

Xa
given by

F (M) := M |∆Xa
for all M ∈MG

Xa

is surjective. By Theorem 3.3.6 we know that for a Markov cocycle M ∈MG
X , M ∈ GG

X if and only

if M |∆Xa
∈ GG

Xa
. Thus F−1(GG

Xa
) = GG

X .
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Via the second isomorphism theorem for vector spaces the map

F̃ : MG
X/F

−1(GG
Xa

) −→MG
Xa
/GG

Xa

given by

F̃ (M mod F−1(GG
Xa

)) := F (M) mod GG
Xa

is an isomorphism. Since F−1(GG
Xa

) = GG
X the proof is complete.
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Chapter 4

Four-Cycle Free Graphs, the Pivot

Property and Entropy Minimality

By H we will always denote an undirected graph without multiple edges and single isolated ver-

tices. The main aim of this chapter is to prove Theorem 1.3.2 (Theorem 4.1.4) and Theorem 1.4.1

(Theorem 4.1.2). Most of this chapter is part of the submitted manuscript [10].

Hom-shifts will be introduced in Section 4.1. Some aspects of thermodynamic formalism will

be stated in Section 4.2. Some technical details regarding folding will be discussed in Section 4.3.

Universal covers will be defined in Section 4.4 and the generalised height functions, subcocycles

will be described in Section 4.5. The proof of the main results can be found in Section 4.6.

4.1 Hom-Shifts

For a graph H we will denote the adjacency relation by ∼H and the set of vertices of H by H
(abusing notation). We identify Zd with the set of vertices of the Cayley graph with respect to the

standard generators ~e1, ~e2, . . . , ~ed, that is, ~i ∼Zd ~j if and only if ‖~i −~j‖1 = 1 where ‖ · ‖1 is the l1

norm. We drop the subscript in ∼H when H = Zd. Let Dn and Bn denote the Zd-balls of radius n

around ~0 in the l1 and the l∞ norm respectively. The graph Cn will denote the n-cycle where the

set of vertices is {0, 1, 2, . . . , n− 1} and i ∼Cn j if and only if i ≡ j ± 1 mod n. The graph Kn will

denote the complete graph with n vertices where the set of vertices is {1, 2, . . . , n} and i ∼Kn j if

and only if i 6= j.

A sliding block code from a shift space X to a shift space Y is a continuous map f : X −→ Y

which commutes with the shifts, that is, σ
~i ◦ f = f ◦ σ~i for all ~i ∈ Zd. A surjective sliding block

code is called a factor map and a bijective sliding block code is called a conjugacy. We note that a

conjugacy defines an equivalence relation; in fact, it has a continuous inverse since it is a continuous

bijection between compact sets.

In this chapter, we will focus on a special class of nearest neighbour shifts of finite type where
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the forbidden patterns are the same in every ‘direction’:

Given a graph H let

Xd
H := Hom(Zd,H) = {x ∈ HZd | x~i ∼H x~j for all ~i ∼ ~j}.

Such spaces will be called hom-shifts. We fix some dimension d ≥ 2 and thereafter drop the

superscript in Xd
H. If H is finite and

FH := {[v, w]~0,~ej | v �H w, 1 ≤ j ≤ d}

then we noted in Section 3.1 that XH = XFH and hence is nearest neighbour shift of finite type.

These are exactly the nearest neighbour shifts of finite type with symmetric and isotropic con-

straints. For example if the graph H is given by Figure 4.1 then XH is the hard square shift, that

is, configurations with alphabet {0, 1} such that adjacent symbols cannot both be 1. XKn is the

space of n-colourings of the graph, that is, configurations with alphabet {1, 2, . . . , n} where all ad-

jacent colours are distinct. We note that the properties, symmetry and isotropy, are not invariant

under conjugacy. In this new notation the spaces Xn introduced in Chapter 2 are the hom-shifts

XCn for n 6= 1, 4.

F will always denote a set of patterns and H will always denote a graph, there will not be any

ambiguity in the notations XF , XH.

A finite graph H is called four-cycle free if it is finite, it has no self-loops and C4 is not a

subgraph of H. For instance K4 is not a four-cycle free graph.

0 1

Figure 4.1: Graph for the Hard Square Shift

Hom-shifts form a special class of shifts of finite type. In general the set of globally allowed

pattern is different from the set of locally allowed patterns: Let X be a shift space with a forbidden

list F . Given a finite set A, a pattern a ∈ AA is said to be locally allowed if no pattern from F
appears in a. In general it is undecidable for shifts of finite type whether a locally allowed pattern

belongs to L(X) [46]; however it is decidable when X is a hom-shift where it is sufficient to check

whether the pattern extends to a locally allowed pattern on Bn for some n.

It is well known that the topological entropy (introduced in Section 2.7) of a shift space X can

be calculated via the following equation:

htop(X) = lim
n−→∞

log |LBn(X)|
|Bn|

.

The existence of the limit follows from subadditivity arguments via the well-known multivariate

version of Fekete’s Lemma [8]. Moreover the topological entropy is an invariant under conjugacy
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(for d = 1 look at Proposition 4.1.9 in [29]; the proof extends to higher dimensions). We remark

that the computation of this invariant for shifts of finite type in d > 1 is a hard problem and

very little is known [40], however there are algorithms to compute approximating upper and lower

bounds of the topological entropy of the hom-shifts [19, 30]. When H is a finite connected graph

with at least two edges, then htop(X) > 0:

Proposition 4.1.1. Let H be a finite graph with vertices a, b and c such that a ∼H b and b ∼H c.
Then htop(XH) ≥ log 2

2 .

Proof. It sufficient to see this for a graph H with exactly three vertices a, b and c such that a ∼H b
and b ∼H c. For such a graph any configuration in XH is composed of b on one partite class of Zd

and a free choice between a and c for vertices on the other partite class. Then

|LBn(X)| = 2b
(2n+1)d

2
c + 2d

(2n+1)d

2
e

proving that htop(XH) = log 2
2 .

A shift space X is called entropy minimal if for all shift spaces Y ( X, htop(X) > htop(Y ). In

other words, a shift space X is entropy minimal if forbidding any word causes a drop in entropy.

From [45] we know that every shift space contains an entropy minimal shift space with the same

entropy and also a characterisation of same entropy factor maps on entropy minimal shifts of finite

type.

One of the main results of this chapter is the following:

Theorem 4.1.2. Let H be a connected four-cycle free graph. Then XH is entropy minimal.

For d = 1 all irreducible shifts of finite type are entropy minimal [29]. A necessary condition

for the entropy minimality of XH is that H has to be connected.

Proposition 4.1.3. Suppose H is a finite graph with connected components H1,H2, . . .Hr. Then

htop(XH) = max1≤i≤r htop(XHi).

This follows from the observation that

max
1≤i≤r

|LBn(XHi)| ≤ |LBn(XH)| =
r∑
i=1

|LBn(XHi)| ≤ r max
1≤i≤r

|LBn(XHi)|.

The following theorem is another main result in this chapter. We refer the reader to Section

2.2.2 so as to review the pivot property.

Theorem 4.1.4. For all four-cycle free graphs H, XH has the pivot property.

It is sufficient to prove this theorem for four-cycle free graphs H which are connected because

of the following proposition:
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Proposition 4.1.5. Let X1, X2, . . . , Xn be shift spaces on disjoint alphabets such that each of them

has the pivot property. Then ∪ni=1Xi also has the pivot property.

This is true since (x, y) ∈ ∆∪ni=1Xi implies (x, y) ∈ ∆Xi for some 1 ≤ i ≤ n.

4.2 Thermodynamic Formalism

In this chapter we will introduce several special cases of theorems introduced in Section 2.7 which

will be useful in this chapter. We refer to it in case the reader would like to review the definitions

of measure theoretic entropy and equilibrium states. Adapted measures can be reviewed from

Subsection 2.1.2.

Given a shift-invariant probability measure ν let hν denote the measure theoretic entropy of

ν. A shift-invariant probability measure µ is a measure of maximal entropy of X if the maximum

of ν 7→ hν over all shift-invariant probability measures on X is obtained at µ. In other words,

measures of maximal entropy are equilibrium states for the function f ≡ 0. The well-known

variational principle for topological entropy of Zd-actions asserts that if µ is a measure of maximal

entropy htop(X) = hµ whenever X is a shift space.

The following is a well-known characterisation of entropy minimality (it is used for instance in

the proof of Theorem 4.1 in [32]):

Proposition 4.2.1. A shift space X is entropy minimal if and only if every measure of maximal

entropy for X is fully supported.

We understand this by the following: Suppose X is entropy minimal and µ is a measure of

maximal entropy for X. Then by the variational principle for X and supp(µ) we get

htop(X) = hµ ≤ htop(supp(µ)) ≤ htop(X)

proving that supp(µ) = X. To prove the converse, suppose for contradiction that X is not entropy

minimal and consider Y ( X such that htop(X) = htop(Y ). Then by the variational principle there

exists a measure µ on Y such that hµ = htop(X). Thus µ is a measure of maximal entropy for X

which is not fully supported.

Further is known if X is a nearest neighbour shift of finite type: Given a set A ⊂ Zd we denote

the r-boundary of A by ∂rA, that is,

∂rA = {~w ∈ Zd \A
∣∣∣ ‖~w − ~v‖1 ≤ r for some ~v ∈ A}.

Note that ∂1A = ∂A. A uniform Markov random field is a Markov random field µ such that

µ([a]A

∣∣∣ [b]∂A) =
1

nA,b|∂A
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where nA,b|∂A = |{a ∈ AA | µ([a]A ∩ [b]∂A) > 0}|.
The following is a special case of Theorem 2.7.1:

Theorem 4.2.2. All measures of maximal entropy on a nearest neighbour shift of finite type X

are shift-invariant uniform Markov random fields µ adapted to X.

The converse is also true under further mixing assumptions on the shift space X (called the

D-condition).

We will often restrict our proofs to the ergodic case. We can do so via the following standard

facts implied by Theorem 2.5.8 and Theorem 4.3.7 in [26]:

Theorem 4.2.3. Let µ be a shift-invariant uniform Markov random field adapted to a shift space

X. Let its ergodic decomposition be given by a measurable map x −→ µx on X, that is, µ =∫
X µxdµ. Then µ-almost everywhere the measures µx are shift-invariant uniform Markov random

fields adapted to X such that supp(µx) ⊂ supp(µ). Moreover
∫
hµxdµ(x) = hµ.

We will prove the following:

Theorem 4.2.4. Let H be a connected four-cycle free graph. Then every ergodic probability measure

adapted to XH with positive entropy is fully supported.

This implies Theorem 4.1.2 by the following: The Lanford-Ruelle theorem implies that every

measure of maximal entropy on XH is a uniform shift-invariant Markov random field adapted to

XH. By Proposition 4.1.1 and the variational principle we know that these measures have positive

entropy. By Theorems 4.2.3 and 4.2.4 they are fully supported. Finally by Proposition 4.2.1, XH

is entropy minimal.

Alternatively, the conclusion of Theorem 4.2.4 can be obtained via some strong mixing con-

ditions on the shift space; we will describe one such assumption. A shift space X is called

strongly irreducible if there exists g > 0 such that for all x, y ∈ X and A,B ⊂ Zd satisfying

min~i∈A,~j∈B ‖~i − ~j‖1 ≥ g, there exists z ∈ X such that z|A = x|A and z|B = y|B. For such a

space, the homoclinic relation is minimal implying the conclusion of Theorem 4.2.4 and further,

that every probability measure adapted to X is fully supported. Note that this does not prove that

X is entropy minimal unless we assume that X is a nearest neighbour shift of finite type. Such an

argument is used in the proof of Lemma 4.1 in [32] which implies that every strongly irreducible

shift of finite type is entropy minimal. A more combinatorial approach was used in [51] to show

that shift spaces (and not just shifts of finite type) with a more general mixing property called

uniform filling are entropy minimal.

4.3 Folding, Entropy Minimality and the Pivot Property

Recall, as in Subsection 3.2.3 given a graph H we say that v folds into w if and only if u ∼H v

implies u ∼H w. In this case the graph H \ {v} is called a fold of H. This map gives rise to a
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‘retract’, that is a graph homomorphism from H to H \ {v} which is the identity on H \ {v} and

sends v to w. This was introduced in [37] to help characterise cop-win graphs and used in [6] to

establish many properties which are preserved under ‘folding’ and ‘unfolding’. Given a finite tree

H with more than two vertices note that a leaf vertex (vertex of degree 1) can always be folded to

some other vertex of the tree. Thus starting with H, there exists a sequence of folds resulting in a

single edge. In fact using a similar argument we can prove the following proposition.

Proposition 4.3.1. Let H ⊂ H′ be trees. Then there is a graph homomorphism f : H′ −→ H such

that f |H is the identity map.

To show this, first note that if H ( H′ then there is a leaf vertex in H′ which is not in H. This

leaf vertex can be folded into some other vertex in H′. Thus by induction on |H′ \H| we can prove

that there is a sequence of folds from H′ to H. Corresponding to this sequence of folds we obtain

a graph homomorphism from H′ to H which is the identity on H.

Here we consider a related notion for shift spaces. Given a nearest neighbour shift of finite type

X ⊂ AZd
, the neighbourhood of a symbol v ∈ A is given by

NX(v) := {a ∈ A∂~0 | [v]~0 ∩ [a]∂~0 ∈ LD1(X)},

that is the collection of all patterns which can ‘surround’ v in X. We will say that v config-folds

into w in X if NX(v) ⊂ NX(w). In such a case we say that X config-folds to X ∩ (A\{v})Zd
. Note

that X ∩ (A \ {v})Zd
is obtained by forbidding v from X and hence it is also a nearest neighbour

shift of finite type. Also if X = XH for some graph H then v config-folds into w in XH if and only

if v folds into w in H. Thus if H is a tree then there is a sequence of folds starting at XH resulting

in the two checkerboard configurations with two symbols (the vertices of the edge which H folds

into). This property is weaker than the notion of folding introduced in Subsection 3.2.3.

The main thrust of this property in our context is: if v config-folds into w in X then given

any x ∈ X, every appearance of v in x can be replaced by w to obtain another configuration in

X. This replacement defines a factor (surjective, continuous and shift-invariant) map f : X −→
X ∩ (A \ {v})Zd

given by

(f(x))~i :=

x~i if x~i 6= v

w if x~i = v.

Note that the map f defines a ‘retract’ from X to X ∩ (A \ {v})Zd
. Frequently we will config-fold

more than one symbol at once (especially in Section 4.6):

Distinct symbols v1, v2, . . . , vn config-fold disjointly into w1, w2, . . . , wn in X if vi config-folds

into wi and vi 6= wj for all 1 ≤ i, j ≤ n. In this case the symbols v1, v2, . . . , vn can be replaced by

w1, w2, . . . , wn simultaneously for all x ∈ X. Suppose v1, v2, . . . vn is a maximal set of symbols which

can be config-folded disjointly in X. Then X ∩ (A\ {v1, v2, . . . , vn})Z
d

is called a full config-fold of
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X. Let vi config-fold into wi for all 1 ≤ i ≤ n. Consider fX : A −→ A \ {v1, v2, . . . , vn} given by

fX(v) :=

v if v 6= vj for all 1 ≤ j ≤ n

wj if v = vj for some 1 ≤ j ≤ n.

This defines a factor map fX : X −→ X ∩ (A \ {v1, v2, . . . , vn})Z
d

given by (fX(x))~i := fX(x~i) for

all ~i ∈ Zd. fX denotes both the factor map and the map on the alphabet, it should be clear from

the context which function is being used.

For example consider a treeH := (V, E) where V := {v1, v2, v3, . . . , vn+1} and E := {(vi, vn+1)|1 ≤
i ≤ n}. Then {v1, v2, . . . , vn−1} is a maximal set of symbols which config-folds disjointly into vn

in XH resulting in the checkerboard patterns with the symbols vn and vn+1. Though the full

config-fold is not necessarily unique, we choose a full config-fold for every shift space and use it to

construct the corresponding function fX .

In many cases we will fix a configuration on a set A ⊂ Zd and apply a config-fold on the rest.

Hence we define the map fX,A : X −→ X given by

(fX,A(x))~i :=

x~i if ~i ∈ A

fX(x~i) otherwise.

The map fX,A can be extended beyond X:

Proposition 4.3.2. Let X ⊂ Y be nearest neighbour shifts of finite type, Z be a full config-fold

of X and y ∈ Y such that for some A ⊂ Zd, y|Ac∪∂(Ac) ∈ LAc∪∂(Ac)(X). Then the configuration z

given by

z~i :=

y~i if ~i ∈ A

fX(y~i) otherwise

is an element of Y . Moreover z|Ac ∈ LAc(Z).

Abusing the notation, in such cases we shall denote the configuration z by fX,A(y).

If Ac is finite, then fX,A changes only finitely many coordinates. These changes can be applied

one by one, that is, there is a chain of pivots in Y from y to fX,A(y).

A nearest neighbour shift of finite type which cannot be config-folded is called a stiff shift. As

in the case for graphs where all the stiff graphs obtained by a sequence of folds of a given graph are

isomorphic [6], all the stiff shifts obtained by a sequence of config-folds of a given nearest neighbour

shift of finite type are topologically conjugate via one-block maps; the proof is similar and we omit

it. Starting with a nearest neighbour shift of finite type X the radius of X is the smallest number
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of full config-folds required to obtain a stiff shift. If H is a tree then the radius of XH is equal to⌊
diameter(H)

2

⌋
.

Thus for every nearest neighbour shift of finite type X there is a sequence of full config-folds (not

necessarily unique) which starts at X and ends at a stiff shift of finite type. Let the radius of X be

r and X = X0, X1, X2, . . . , Xr be a sequence of full config-folds where Xr is stiff. This generates a

sequence of maps fXi : Xi −→ Xi+1 for all 0 ≤ i ≤ r−1. In many cases we will fix a pattern on Dn

or Dc
n and apply these maps on the rest of the configuration. Consider the maps IX,n : X −→ X

and OX,n : X −→ X (for n > r) given by

IX,n(x) := fXr−1,Dn+r−1

(
fXr−2,Dn+r−2 (. . . (fX0,Dn(x)) . . .)

)
(Inward Fixing Map)

and

OX,n(x) := fXr−1,Dc
n−r+1

(
fXr−2,Dc

n−r+2

(
. . .
(
fX0,Dc

n
(x)
)
. . .
))

(Outward Fixing Map).

Similarly we consider maps which do not fix anything, FX : X −→ Xr given by

FX(x) := fXr−1

(
fXr−2 (. . . (fX0(x)) . . .)

)
.

Note that Dk ∪ ∂Dk = Dk+1 and Dc
k ∪ ∂(Dc

k) = Dc
k−1. This along with repeated application of

Proposition 4.3.2 implies that the image of IX,n and OX,n lie in X. This also implies the following

proposition:

Proposition 4.3.3 (The Onion Peeling Proposition). Let X ⊂ Y be nearest neighbour shifts of

finite type with radius r, Z be a stiff shift obtained by a sequence of config-folds starting with X

and y1, y2 ∈ Y such that y1|Dc
n−1
∈ LDc

n−1
(X) and y2|Dn+1 ∈ LDn+1(X). Let z1, z2 ∈ Y be given by

z1 := fXr−1,Dn+r−1

(
fXr−2,Dn+r−2

(
. . .
(
fX0,Dn(y1)

)
. . .
))

z2 := fXr−1,Dc
n−r+1

(
fXr−2,Dc

n−r+2

(
. . .
(
fX0,Dc

n
(y2)

)
. . .
))

for n > r.

The patterns z1|Dc
n+r−1

∈ LDc
n+r−1

(Z) and z2|Dn−r+1 ∈ LDn−r+1(Z). If y1, y2 ∈ X then in addition

z1|Dc
n+r−1

= FX(y1)|Dc
n+r−1

and

z2|Dn−r+1 = FX(y2)|Dn−r+1 .

Abusing the notation, in such cases we shall denote the configurations z1 and z2 by IX,n(y1)

and OX,n(y2) respectively. Note that IX,n(y1)|Dn = y1|Dn and OX,n(y2)|Dc
n

= y2|Dc
n
. Also, OX,n is

a composition of maps of the form fX,A where Ac is finite; there is a chain of pivots in Y from y to
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OX,n(y).

There are two kind of stiff shifts which will be of interest to us: A configuration x ∈ AZd
is

called periodic if there exists n ∈ N such that σn~ei(x) = x for all 1 ≤ i ≤ d. A configuration x ∈ X
is called frozen if its homoclinic class is singleton. This notion coincides with the notion of frozen

coloring in [6]. A subshift X will be called frozen if it consists of frozen configurations, equivalently

∆X is the diagonal. A measure on X will be called frozen if its support is frozen. Note that any

shift space consisting just of periodic configurations is frozen. All frozen nearest neighbour shifts

of finite type are stiff.

Proposition 4.3.4. Let X be a nearest neighbour shift of finite type such that a sequence of config-

folds starting from X results in the orbit of a periodic configuration. Then every shift-invariant

probability measure adapted to X is fully supported.

Proposition 4.3.5. Let X be a nearest neighbour shift of finite type such that a sequence of config-

folds starting from X results in a frozen shift. Then X has the pivot property.

Examples:

1. X := {0}Zd∪{1}Zd
is a frozen shift space but not the orbit of a periodic configuration. Clearly

the delta measure δ{0}Zd is a shift-invariant probability measure adapted to X but not fully

supported. A more non-trivial example of the nearest neighbour shift of finite type which

is frozen but not the orbit of a periodic configuration is the set of the Robinson tilings [46].

It is well known that it is uniquely ergodic and the unique measure is an (adapted) uniform

Markov random field which is not fully supported.

2. A shift space X ⊂ AZd
is said to have a safe symbol ? if for all x ∈ X and A ⊂ Zd the

configuration z ∈ AZd
given by

z~i :=

x~i if ~i ∈ A

? if ~i ∈ Ac

is also an element of X. Then any symbol in X can be config-folded into the safe sym-

bol. By config-folding the symbols one by one we obtain a fixed point {?}Zd
. Thus any

nearest neighbour shift of finite type with a safe symbol satisfies the hypothesis of both the

propositions.

3. Suppose H is a graph which folds into a single edge (denoted by Edge) or a single vertex v

with a loop. Then the shift space XH can be config-folded to XEdge (which consists of two

periodic configurations) or the fixed point {v}Zd
respectively. In the latter case, the graph H

is called dismantlable [37]. Note that finite trees and the graph C4 fold into an edge. Thus in

this class of examples H may have C4 as a subgraph or self-loops. For dismantlable graphs

H Theorem 4.1 in [6] implies the conclusion of Propositions 4.3.4 and 4.3.5 for XH.
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Proof of Proposition 4.3.4. Let µ be a shift-invariant probability measure adapted to X. To prove

that supp(µ) = X it is sufficient to prove that for all n ∈ N and x ∈ X that µ([x]Dn) > 0. Let

X0 = X, X1, X2, . . . , Xr be a sequence of full config-folds where Xr := {σ~i1(p), σ
~i2(p), . . . , σ

~ik−1(p)}
is the orbit of a periodic point. For any two configurations z, w ∈ X there exists ~i ∈ Zd such that

FX(z) = FX(σ
~i(w)). Since µ is shift-invariant we can choose y ∈ supp(µ) such that FX(x) =

FX(y). Consider the configurations IX,n(x) and OX,n+2r−1(y). By Proposition 4.3.3 they satisfy

the equations

IX,n(x)|Dc
n+r−1

= FX(x)|Dc
n+r−1

and

OX,n+2r−1(y)|Dn+r = FX(y)|Dn+r .

Then IX,n(x)|∂Dn+r−1 = OX,n+2r−1(y)|∂Dn+r−1 . Since X is a nearest neighbour shift of finite type,

the configuration z given by

z|Dn+r := IX,n(x)|Dn+r

z|Dc
n+r−1

:= OX,n+2r−1(y)|Dc
n+r−1

is an element of X. Moreover

z|Dn = IX,n(x)|Dn = x|Dn

z|Dc
n+2r−1

= OX,n+2r−1(y)|Dc
n+2r−1

= y|Dc
n+2r−1

.

Thus (y, z) ∈ ∆X . Since µ is adapted we get that z ∈ supp(µ). Finally

µ([x]Dn) = µ([z]Dn) > 0.

Note that all the maps being discussed here, fX , fX,A, FX , IX,n and OX,n are (not necessarily

shift-invariant) single block maps, that is, maps f where (f(x))~i depends only on x~i. Thus if f is

one such map and x|A = y|A for some set A ⊂ Zd then f(x)|A = f(y)|A; they map homoclinic pairs

to homoclinic pairs.

Proof of Proposition 4.3.5. Let X0 = X, X1, X2, . . . , Xr be a sequence of full config-folds where

Xr is frozen. Let (x, y) ∈ ∆X . Since Xr is frozen, FX(x) = FX(y). Suppose x|Dc
n

= y|Dc
n

for some

n ∈ N. Then OX,n+r−1(x)|Dc
n

= OX,n+r−1(y)|Dc
n
. Also by Proposition 4.3.3,

OX,n+r−1(x)|Dn = FX(x)|Dn = FX(y)|Dn = OX,n+r−1(y)|Dn .
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This proves that OX,n+r−1(x) = OX,n+r−1(y). In fact it completes the proof since for all z ∈ X
there exists a chain of pivots in X from z to OX,n+r−1(z).

4.4 Universal Covers

Most cases will not be as simple as in the proof of Propositions 4.3.4 and 4.3.5. We wish to prove the

conclusions of these propositions for hom-shifts XH when H is a connected four-cycle free graph.

Many ideas carry over from the proofs of these results because of the relationship of such graphs

with their universal covers; we describe this relationship next. The results in this section are not

original; look for instance in [56]. We mention them for completeness.

Let H be a finite connected graph with no self-loops. We denote by dH the ordinary graph

distance on H and by DH(u), the ball of radius 1 around u. A graph homomorphism π : C −→ H is

called a covering map if for some n ∈ N ∪ {∞} and all u ∈ H, there exist disjoint sets {Ci}ni=1 ⊂ C
such that π−1 (DH(u)) = ∪ni=1Ci and π|Ci : Ci −→ DH(u) is an isomorphism of the induced

subgraphs for 1 ≤ i ≤ n. A covering space of a graph H is a graph C such that there exists a

covering map π : C −→ H.

A universal covering space of H is a covering space of H which is a tree. Unique up to graph

isomorphism [56], these covers can be described in multiple ways. Their standard construction

uses non-backtracking walks [1]: A walk on H is a sequence of vertices (v1, v2, . . . , vn) such that

vi ∼H vi+1 for all 1 ≤ i ≤ n− 1. The length of a walk p = (v1, v2, . . . , vn) is |p| = n− 1, the number

of edges traversed on that walk. It is called non-backtracking if vi−1 6= vi+1 for all 2 ≤ i ≤ n − 1,

that is, successive steps do not traverse the same edge. Choose a vertex u ∈ H. The vertex set of

the universal cover is the set of all non-backtracking walks on H starting from u; there is an edge

between two such walks if one extends the other by a single step. The choice of the starting vertex u

is arbitrary; choosing a different vertex gives rise to an isomorphic graph. We denote the universal

cover by EH. The covering map π : EH −→ H maps a walk to its terminal vertex. Usually, we will

denote by ũ, ṽ and w̃ the vertices of EH such that π(ũ) = u, π(ṽ) = v and π(w̃) = w.

This construction shows that the universal cover of a graph is finite if and only if it is a finite

tree. To see this if the graph has a cycle then the finite segments of the walk looping around the

cycle give us infinitely many vertices for the universal cover. If the graph is a finite tree, then all

walks must terminate at the leaves and their length is bounded by the diameter of the tree. In

fact, the universal cover of a tree is itself while the universal cover of a cycle (for instance C4) is Z
obtained by finite segments of the walks (1, 2, 3, 4, 1, 2, 3, 4, . . .) and (1, 4, 3, 2, 1, 4, 3, 2, . . .).

Following the ideas of homotopies in algebraic topology, there is a natural operation on the

set of walks: two walks can be joined together if one begins where the other one ends. More

formally, given two walks p = (v1, v2, . . . , vn) and q = (w1, w2, . . . , wm) where vn = w1, consider

p ? q = (v1, v2, . . . , vn, w2, w3, . . . , wm). However even when p and q are non-backtracking p ? q need

not be non-backtracking. So we consider the walk [p ? q] instead which erases the backtracking
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segments of p ? q, that is, if for some i ∈ N, vn−i+1 6= wi and vn−j+1 = wj for all 1 ≤ j ≤ i− 1 then

[p ? q] := (v1, v2, . . . , vn−i+1, wi−1, wi, . . . , wm).

This operation of erasing the backtracking segments is called reduction, look for instance in

[56]. The following proposition is well-known (Section 4 of [56]) and shall be useful in our context

as well.

Proposition 4.4.1. Let H be a finite connected graph without any self-loops. Then for all ṽ, w̃ ∈
EH satisfying π(ṽ) = π(w̃) there exists a graph isomorphism φ : EH −→ EH such that φ(ṽ) = w̃

and π ◦ φ = π.

To see how to construct this isomorphism, consider as an example (u), the empty walk on H and

(v1, v2, . . . , vn), some non-backtracking walk such that v1 = vn = u. Then the map φ : EH −→ EH

given by

φ(w̃) := [(v1, v2, . . . , vn) ? w̃].

is a graph isomorphism which maps (u) to (v1, v2, . . . , vn); its inverse is ψ : EH −→ EH given by

ψ(w̃) := [(vn, vn−1, . . . , v1) ? w̃].

The maps φ, π described above give rise to natural maps, also denoted by φ and π where

φ : XEH −→ XEH

is given by φ(x̃)~i := φ(x̃~i) and

π : XEH −→ XH

is given by π(x̃)~i := π(x̃~i) for all ~i ∈ Zd respectively. A lift of a configuration x ∈ XH is a

configuration x̃ ∈ XEH such that π ◦ x̃ = x.

Now we shall analyse some consequences of this formalism in our context. More general state-

ments (where Zd is replaced by a different graph) are true (under a different hypothesis on H), but

we restrict to the four-cycle free condition. We noticed in Section 4.3 that if H is a tree then XH

satisfies the conclusions of Theorems 4.2.4 and 4.1.4. Now we will draw a connection between the

four-cycle free condition on H and the formalism in Section 4.3.

Proposition 4.4.2 (Existence of Lifts). Let H be a connected four-cycle free graph. For all x ∈ XH
there exists x̃ ∈ XEH such that π(x̃) = x. Moreover the lift x̃ is unique up to a choice of x̃~0.

Proof. We will begin by constructing a sequence of graph homomorphisms x̃n : Dn −→ EH such

that π ◦ x̃n = x|Dn and x̃m|Dn = x̃n for all m > n. Then by taking the limit of these graph

homomorphisms we obtain a graph homomorphism x̃ ∈ XEH such that π ◦ x̃ = x. It will follow
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that given x̃0 the sequence x̃n is completely determined proving that that the lifting is unique up

to a choice of x̃~0.

The recursion is the following: Let x̃n : Dn −→ EH be a given graph homomorphism for some

n ∈ N ∪ {0} such that π ◦ x̃n = x|Dn . For any ~i ∈ Dn+1 \ Dn, choose a vertex ~j ∈ Dn such that

~j ∼~i. Then π(x̃n~j ) = x~j ∼ x~i. Since π defines a local isomorphism between EH and H, there exists

a unique vertex ṽ~i ∼ x̃
n
~j
∈ EH such that π(ṽ~i) = x~i. Define x̃n+1 : Dn+1 −→ EH by

x̃n+1
~i

:=

x̃n~i if ~i ∈ Dn

ṽ~i if ~i ∈ Dn+1 \Dn.

Then clearly π ◦ x̃n+1 = x|Dn+1 and x̃n+1|Dn = x̃n. Note that the extension x̃n+1 is uniquely

defined given x̃n.

We need to prove that this defines a valid graph homomorphism from Dn+1 to EH. Let ~i ∈
Dn+1 \ Dn and ~j ∈ Dn be chosen as described above. Consider if possible any ~j′ 6= ~j ∈ Dn such

that ~j′ ∼~i. To prove that x̃n+1 is a graph homomorphism we need to verify that x̃n+1
~j′
∼ x̃n+1

~i
.

Consider ~i′ ∈ Dn such that ~i′ ∼ ~j and ~j′. Then ~i′,~j,~i and ~j′ form a four-cycle. Since H is

four-cycle free either x~i′ = x~i or x~j′ = x~j .

Suppose x~i′ = x~i; the other case is similar. Since π is a local isomorphism and x̃n+1
~i

, x̃n+1
~i′
∼

x̃n+1
~j

, we get that x̃n+1
~i

= x̃n+1
~i′

. But ~i′,~j′ ∈ Dn and x̃n+1|Dn = x̃n is a graph homomorphism;

therefore x̃n+1
~i

= x̃n+1
~i′
∼ x̃n+1

~j′
.

Corollary 4.4.3. Let H be a connected four-cycle free graph and x, y ∈ XH. Consider some lifts

x̃, ỹ ∈ XEH such that π(x̃) = x and π(ỹ) = y. If for some ~i0 ∈ Zd, x̃~i0 = ỹ~i0 then x̃ = ỹ on the

connected subset of

{~j ∈ Zd | x~j = y~j}

which contains ~i0.

Proof. Let D be the connected component of {~i ∈ Zd |x~i = y~i} and D̃ be the connected component

of {~i ∈ Zd | x̃~i = ỹ~i} which contain ~i0.

Clearly D̃ ⊂ D. Suppose D̃ 6= D. Since both D and D̃ are non-empty, connected sets there

exist ~i ∈ D \ D̃ and ~j ∈ D̃ such that ~i ∼ ~j. Then x~i = y~i, x~j = y~j and x̃~j = ỹ~j . Since π is a local

isomorphism, the lift must satisfy x̃~i = ỹ~i implying ~i ∈ D̃. This proves that D = D̃.

The following corollary says that any two lifts of the same graph homomorphism are ‘identical’.

Corollary 4.4.4. Let H be a connected four-cycle free graph. Then for all x̃1, x̃2 ∈ XEH satisfying

π(x̃1) = π(x̃2) = x there exists an isomorphism φ : EH −→ EH such that φ ◦ x̃1 = x̃2.
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Proof. By Proposition 4.4.1 there exists an isomorphism φ : EH −→ EH such that φ(x̃1
~0
) = x̃2

~0
and

π ◦ φ = π. Then (φ ◦ x̃1)~0 = x̃2
~0

and π(φ ◦ x̃1) = (π ◦ φ)(x̃1) = π(x̃1) = x. By Proposition 4.4.2

φ ◦ x̃1 = x̃2.

It is worth noting at this point the relationship of the universal cover described here with

the universal cover in algebraic topology. Undirected graphs can be identified with 1 dimensional

CW-complexes where the set of vertices correspond to the 0-cells, the edges to the 1-cells of the

complex and the attaching map sends the end-points of the edges to their respective vertices.

With this correspondence in mind the (topological) universal covering space coincides with the

(combinatorial) universal covering space described above; indeed a 1 dimensional CW-complex is

simply connected if and only if it does not have any loops, that is, the corresponding graph does not

have any cycles; it is a tree. The results in the section are well known in much greater generality.

Look for instance in Chapter 13 in [35] or Chapters 5 and 6 in [31].

4.5 Generalised Height Functions and Sub-Cocycles

Existence of lifts as described in the previous section enables us to measure the ‘rigidity’ of con-

figurations. In this section we define generalised height functions and subsequently the slope of

configurations, where steepness corresponds to this ‘rigidity’.

Fix a connected four-cycle free graph H. Given x ∈ XH we can define the corresponding

generalised height function hx : Zd × Zd −→ Z given by hx(~i,~j) := dEH(x̃~i, x̃~j) where x̃ is a lift of

x. It follows from Corollary 4.4.4 that hx is independent of the lift x̃.

Given a finite subset A ⊂ Zd and x ∈ XH we define the range of x on A as

RangeA(x) := max
~j1,~j2∈A

hx(~j1,~j2).

For all x ∈ XH
RangeA(x) ≤ Diameter(A)

and more specifically

RangeDn(x) ≤ 2n (4.5.1)

for all n ∈ N. Since x̃ ∈ XEH is a map between bipartite graphs it preserves the parity of the

distance function, that is, if ~i,~j ∈ Zd and x ∈ XH then the parity of ‖~i−~j‖1 is the same as that of

hx(~i,~j). As a consequence it follows that Range∂Dn(x) is even for all x ∈ XH and n ∈ N. We note

that

RangeA(x) = diameter(Image(x̃|A)).

The generalised height function hx is subadditive, that is,

hx(~i,~j) ≤ hx(~i,~k) + hx(~k,~j)
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for all x ∈ XH and ~i,~j and ~k ∈ Zd. This is in contrast with the usual height function (as in

Subsection 2.3 and [41]) where there is an equality instead of the inequality. This raises some

technical difficulties which are partly handled by the subadditive ergodic theorem.

The following terminology is not completely standard: Given a shift space X a sub-cocycle is a

measurable map c : X × Zd −→ N ∪ {0} such that for all ~i,~j ∈ Zd

c(x,~i+~j) ≤ c(x,~i) + c(σ
~i(x),~j).

Sub-cocycles arise in a variety of situations; look for instance in [25]. We are interested in the case

c(x,~i) = hx(~0,~i) for all x ∈ XH and~i ∈ Zd. The measure of ‘rigidity’ lies in the asymptotics of this

sub-cocycle, the existence of which is provided by the subadditive ergodic theorem. Given a set X

if f : X −→ R is a function then let f+ := max(0, f).

Theorem 4.5.1 (Subadditive Ergodic Theorem). [58] Let (X,B, µ) be a probability space and let

T : X −→ X be measure preserving. Let {fn}∞n=1 be a sequence of measurable functions fn : X −→
R ∪ {∞} satisfying the conditions:

(a) f+
1 ∈ L1(µ)

(b) for each m, n ≥ 1, fn+m ≤ fn + fm ◦ Tn µ-almost everywhere.

Then there exists a measurable function f −→ R ∪ {−∞} such that f+ ∈ L1(µ), f ◦ T = f ,

limn→∞
1
nfn = f , µ-almost everywhere and

lim
n−→∞

1

n

∫
fndµ = inf

n

1

n

∫
fndµ =

∫
fdµ.

Given a direction~i = (i1, i2, . . . , id) ∈ Rd let b~ic = (bi1c, bi2c, . . . , bidc). We define for all x ∈ XH
the slope of x in the direction ~i as

sl~i(x) := lim
n−→∞

1

n
hx(~0, bn~ic)

whenever it exists.

If ~i ∈ Zd we note that the sequence of functions fn : XH −→ N ∪ {~0} given by

fn(x) = hx(~0, n~i)

satisfies the hypothesis of this theorem for any shift-invariant probability measure on XH: |f1| ≤
‖~i‖1 and the subadditivity condition in the theorem is just a restatement of the sub-cocycle condition

described above, that is, if T = σ
~i then

fn+m(x) = hx(~0, (n+m)~i) ≤ hx(~0, n~i) + h
σn~ix

(~0,m~i) = fn(x) + fm(Tn(x)).
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The asymptotics of the generalised height functions (or more generally the sub-cocycles) are a

consequence of the subadditive ergodic theorem as we will describe next. In the following by an

ergodic measure on XH, we mean a probability measure on XH which is ergodic with respect to

the Zd-shift action on XH.

Proposition 4.5.2 (Existence of Slopes). Let H be a connected four-cycle free graph and µ be an

ergodic measure on XH. Then for all ~i ∈ Zd

sl~i(x) = lim
n−→∞

1

n
hx(~0, n~i)

exists almost everywhere and is independent of x. Moreover if ~i = (i1, i2 . . . , id) then

sl~i(x) ≤
d∑

k=1

|ik|sl~ek(x).

Proof. Fix a direction ~i ∈ Zd. Consider the sequence of functions {fn}∞n=1 and the map T :

XH −→ XH as described above. By the subadditive ergodic theorem there exists a function

f : XH −→ R ∪ {−∞} such that

lim
n→∞

1

n
fn = f almost everywhere.

Note that f = sl~i. Since for all x ∈ XH and n ∈ N, 0 ≤ fn ≤ n‖~i‖1, 0 ≤ f(x) ≤ ‖i‖1 whenever it

exists. Fix any ~j ∈ Zd. Then

fn(σ
~j(x)) = h

σ~j(x)
(~0, n~i) = hx(~j, n~i+~j)

and hence

−hx(~j,~0) + hx(~0, n~i)− hx(n~i, n~i+~j) ≤ fn(σ
~j(x))

≤ hx(~j,~0) + hx(~0, n~i) + hx(n~i, n~i+~j)

implying

−2‖~j‖1 + fn(x) ≤ fn(σ
~j(x)) ≤ 2‖~j‖1 + fn(x)

implying

f(x) = lim
n−→∞

1

n
fn(x) = lim

n−→∞

1

n
fn(σ

~jx) = f(σ
~j(x))

almost everywhere. Since µ is ergodic sl~i = f is constant almost everywhere. Let~ik = (i1, i2, . . . , ik, 0, . . . , 0) ∈
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Zd. By the subadditive ergodic theorem

sl~i(x) =

∫
sl~i(x)dµ = lim

n−→∞

1

n

∫
hx(~0, n~i)dµ

≤
d∑

k=1

lim
n−→∞

1

n

∫
h
σn~ik−1 (x)

(~0, nik~ek)dµ

=
d∑

k=1

lim
n−→∞

1

n

∫
hx(~0, nik~ek)dµ

≤
d∑

k=1

|ik| lim
n−→∞

1

n

∫
hx(~0, n~ek)dµ

=

d∑
k=1

|ik|sl~ek(x).

almost everywhere.

Corollary 4.5.3. Let H be a connected four-cycle free graph. Suppose µ is an ergodic measure on

XH. Then for all ~i ∈ Rd

sl~i(x) = lim
n−→∞

1

n
hx(~0, bn~ic)

exists almost everywhere and is independent of x. Moreover if ~i = (i1, i2, . . . , id) then

sl~i(x) ≤
d∑

k=1

|ik|sl~ek(x).

Proof. Let ~i ∈ Qd and N ∈ N such that N~i ∈ Zd. For all n ∈ N there exists k ∈ N ∪ {0} and

0 ≤ m ≤ N − 1 such that n = kN +m. Then for all x ∈ XH

hx(~0, kN~i)−N‖~i‖1 ≤ hx(~0, bn~ic) ≤ hx(~0, kN~i) +N‖~i‖1

proving

sl~i(x) = lim
n−→∞

1

n
hx(~0, bn~ic) =

1

N
lim

k−→∞

1

k
hx(~0, kN~i) =

1

N
slN~i(x)

almost everywhere. Since slN~i is constant almost everywhere, we have that sl~i is constant almost

everywhere as well; denote the constant by c~i . Also

sl~i(x) ≤ 1

N

d∑
l=1

|Nil|sl~el(x) =

d∑
l=1

|il|sl~el(x).
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Let X ⊂ XH be a set of configurations x such that

lim
n−→∞

1

n
hx(~0, bn~ic) = c~i

for all ~i ∈ Qd. We have proved that µ(X) = 1.

Fix x ∈ X. Let ~i,~j ∈ Rd such that ‖~i−~j‖1 < ε. Then∣∣∣∣ 1nhx(~0, bn~ic)− 1

n
hx(~0, bn~jc)

∣∣∣∣ ≤ 1

n
‖bn~ic − bn~jc‖1 ≤ ε+

2d

n
.

Thus we can approximate 1
nhx(~0, bn~ic) for ~i ∈ Rd by 1

nhx(~0, bn~jc) for ~j ∈ Qd to prove that

limn−→∞
1
nhx(~0, bn~ic) exists for all ~i ∈ Rd, is independent of x ∈ X and satisfies

sl~i(x) ≤
d∑

k=1

|ik|sl~ek(x).

The existence of slopes can be generalised from generalised height functions to continuous sub-

cocycles; the same proofs work:

Proposition 4.5.4. Let c : X×Zd −→ R be a continuous sub-cocycle and µ be an ergodic measure

on X. Then for all ~i ∈ Rd

slc~i (x) := lim
n−→∞

1

n
c(x, bn~ic)

exists almost everywhere and is independent of x. Moreover if ~i = (i1, i2 . . . , id) then

slc~i (x) ≤
d∑

k=1

|ik|slc~ek(x).

Let CX be the space of continuous sub-cocycles on a shift space X. CX has a natural vector

space structure: given c1, c2 ∈ CX , (c1 + αc2) is also a continuous sub-cocycle on X for all α ∈ R
where addition and scalar multiplication is point-wise. The following is not hard to prove and

follows directly from definition.

Proposition 4.5.5. Let X,Y be conjugate shift spaces. Then every conjugacy f : X −→ Y induces

an isomorphism f? : CY −→ CX given by

f?(c)(x,~i) := c(f(x),~i)

for all c ∈ CY , x ∈ X and ~i ∈ Zd. Moreover slc~i (y) = sl
f?(c)
~i

(f−1(y)) for all y ∈ Y and ~i ∈ Rd for

which the slope slc~i (y) exists.
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4.6 Proofs of the Main Theorems

Proof of Theorem 4.2.4. If H is a single edge, then XH is the orbit of a periodic configuration; the

result follows immediately. Suppose this is not the case. The proof follows loosely the proof of

Theorem 4.3.4 and morally the ideas from [52]: We prove existence of two kind of configurations in

XH, ones which are ‘poor’ (Lemma 4.6.1), in the sense that they are frozen and others which are

‘universal’ (Lemma 4.6.2), for which the homoclinic class is dense.

Ideas for the following proof were inspired by discussions with Anthony Quas. A similar result

in a special case is contained in Lemma 2.7.2.

Lemma 4.6.1. Let H be a connected four-cycle free graph and µ be an ergodic probability measure

on XH such that sl~ek(x) = 1 almost everywhere for some 1 ≤ k ≤ d. Then µ is frozen and hµ = 0.

Proof. Without loss of generality assume that sl~e1(x) = 1 almost everywhere. By the subadditivity

of the generalised height function for all k, n ∈ N and x ∈ XH we know that

1

kn
hx(~0, kn~e1) ≤ 1

kn

n−1∑
m=0

hx(km~e1, k(m+ 1)~e1) =
1

n

n−1∑
m=0

1

k
hσkm~e1 (x)(

~0, k~e1) ≤ 1.

Since sl~e1(x) = 1 almost everywhere, we get that

lim
n−→∞

1

n

n−1∑
m=0

1

k
hσkm~e1 (x)(

~0, k~e1) = 1

almost everywhere. By the ergodic theorem∫
1

k
hx(~0, k~e1)dµ = 1.

Therefore hx(~0, k~e1) = k almost everywhere which implies that

hx(~i,~i+ k~e1) = k (4.6.1)

for all~i ∈ Zd and k ∈ N almost everywhere. Let X ⊂ supp(µ) denote the set of such configurations.

For some n ∈ N consider two patterns a, b ∈ LBn∪∂2Bn(supp(µ)) such that a|∂2Bn = b|∂2Bn .

We will prove that then a|Bn = b|Bn . This will prove that µ is frozen, and so |LBn(supp(µ))| =

|L∂2Bn(supp(µ))| ≤ |A||∂2Bn| implying that htop(supp(µ)) = 0. By the variational principle this

implies that hµ = 0.

Consider x, y ∈ X such that x|Bn∪∂2Bn = a and y|Bn∪∂2Bn = b. Noting that ∂2Bn is con-

nected, by Corollary 4.4.3 we can choose lifts x̃, ỹ ∈ XEH such that x̃|∂2Bn = ỹ|∂2Bn . Consider

any ~i ∈ Bn and choose k ∈ −N such that ~i + k~e1,~i + (2n + 2 + k)~e1 ∈ ∂Bn. Then by (4.6.1)
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dEH(x̃~i+k~e1 , x̃~i+(2n+2+k)~e1
) = 2n+ 2. But

(x̃~i+k~e1 , x̃~i+(k+1)~e1
, . . . , x̃~i+(2n+2+k)~e1

) and

(ỹ~i+k~e1 , ỹ~i+(k+1)~e1
, . . . , ỹ~i+(2n+2+k)~e1

)

are walks of length 2n + 2 from x̃~i+k~e1 to x̃~i+(2n+2+k)~e1
. Since EH is a tree and the walks are of

minimal length, they must be the same. Thus x̃|Bn = ỹ|Bn . Taking the image under the map π we

derive that

a|Bn = x|Bn = y|Bn = b|Bn .

This partially justifies the claim that steep slopes lead to greater ‘rigidity’. We are left to

analyse the case where the slope is submaximal in every direction. As in the proof of Proposition

2.6.1 we will now prove a certain mixing result for the shift space XH.

Lemma 4.6.2. Let H be a connected four-cycle free graph and |H| = r. Consider any x ∈ XH and

some y ∈ XH satisfying Range∂D(d+1)n+3r+k
(y) ≤ 2k for some n ∈ N. Then

1. If either H is not bipartite or x~0, y~0 are in the same partite class of H then there exists z ∈ XH
such that

z~i =

x~i if ~i ∈ Dn

y~i if ~i ∈ Dc
(d+1)n+3r+k.

2. If H is bipartite and x~0, y~0 are in different partite classes of H then there exists z ∈ XH such

that

z~i =

x~i+~e1 if ~i ∈ Dn

y~i if ~i ∈ Dc
(d+1)n+3r+k.

The distance dn+ 3r + k is not optimal, but sufficient for our purposes.

Proof. We will construct the configuration z only in the case when H is not bipartite. The con-

struction in the other cases is similar; the differences will be pointed out in the course of the

proof.

1. Boundary patterns with non-maximal range to monochromatic patterns inside.

Let ỹ be a lift of y and T ′ be the image of ỹ|D(d+1)n+3r+k+1
. Let T be a minimal subtree of

EH such that

Image(ỹ|∂D(d+1)n+3r+k
) ⊂ T ⊂ T ′.
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Since Range∂D(d+1)n+3r+k
(y) ≤ 2k, diameter(T ) ≤ 2k. By Proposition 4.3.1 there exists a

graph homomorphism f : T ′ −→ T such that f |T is the identity. Consider the configuration

ỹ1 given by

ỹ1
~i

=

f(ỹ~i) if ~i ∈ D(d+1)n+3r+k+1

ỹ~i otherwise.

The pattern

ỹ1|D(d+1)n+3r+k+1
∈ LD(d+1)n+3r+k+1

(XT ) ⊂ LD(d+1)n+3r+k+1
(XEH).

Moreover since f |T is the identity map,

ỹ1|Dc
(d+1)n+3r+k

= ỹ|Dc
(d+1)n+3r+k

∈ LDc
(d+1)n+3r+k

(XEH).

Since XEH is given by nearest neighbour constraints ỹ1 ∈ XEH .

Recall that the radius of a nearest neighbour shift of finite type (in our case XT ) is the total

number of full config-folds required to obtain a stiff shift. Since diameter(T ) ≤ 2k the radius

of XT ≤ k. Let a stiff shift obtained by a sequence of config-folds starting at XT be denoted

by Z. Since T folds into a graph consisting of a single edge, Z consists of two checkerboard

patterns in the vertices of an edge in T , say ṽ1 and ṽ2. Corresponding to such a sequence of

full config-folds, we had defined in Section 4.3 the outward fixing map OXT ,(d+1)n+3r+k. By

Proposition 4.3.3 the configuration OXT ,(d+1)n+3r+k(ỹ
1) ∈ XEH satisfies

OXT ,(d+1)n+3r+k(ỹ
1)|D(d+1)n+3r+1

∈ LD(d+1)n+3r+1
(Z)

OXT ,(d+1)n+3r+k(ỹ
1)|Dc

(d+1)n+3r+k
= ỹ1|Dc

(d+1)n+3r+k
= ỹ|Dc

(d+1)n+3r+k
.

Note that the pattern OXT ,(d+1)n+3r+k(ỹ
1)|∂D(d+1)n+3r

uses a single symbol, say ṽ1. Let

π(ṽ1) = v1. Then the configuration y′ = π(OXT ,(d+1)n+3r+k(ỹ
1)) ∈ XH satisfies

y′|∂D(d+1)n+3r
= v1

y′|Dc
(d+1)n+3r+k

= y|Dc
(d+1)n+3r+k

.

2. Constant extension of an admissible pattern. Consider some lift x̃ of x. We begin by

extending x̃|Bn to a periodic configuration x̃1 ∈ XEH . Consider the map f : [−n, 3n] −→
[−n, n] given by

f(k) =

k if k ∈ [−n, n]

2n− k if k ∈ [n, 3n].
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Then we can construct the pattern ã ∈ L[−n,3n]d(XEH) given by

ãi1,i2,...id = x̃f(i1),f(i2),...,f(id).

Given k, l ∈ [−n, 3n] if |k − l| = 1 then |f(k)− f(l)| = 1. Thus ã is a locally allowed pattern

in XEH . Moreover since f(−n) = f(3n) the pattern ã is ‘periodic’, meaning,

ãi1,i2,...,ik−1,−n,ik+1,...,id = ãi1,i2,...,ik−1,3n,ik+1,...,id

for all i1, i2, . . . , id ∈ [−n, 3n]. Also ã|Bn = x̃|Bn . Then the configuration x̃1 obtained by

tiling Zd with ã|[−n,3n−1]d , that is,

x̃1
~i

= ã(i1 mod 4n, i2 mod 4n, ..., id mod 4n)−(n,n,...,n) for all ~i ∈ Zd

is an element of XEH . Moreover x̃1|Bn = ã|Bn = x̃|Bn and Image(x̃1) = Image(x̃|Bn).

Since diameter(Bn) = 2dn, diameter(Image(x̃1)) ≤ 2dn. Let T̃ = Image(x̃1). Then

radius(XT̃ ) ≤ dn. Let a stiff shift obtained by a sequence of config-folds starting at XT̃
be denoted by Z ′. Since T̃ folds into a graph consisting of a single edge, Z ′ consists of two

checkerboard patterns in the vertices of an edge in T̃ , say w̃1 and w̃2. Then by Proposition

4.3.3

IXT̃ ,n(x̃1)|Dn = x̃1|Dn = x̃|Dn

IXT̃ ,n(x̃1)|Dc
(d+1)n−1

∈ LDc
(d+1)n−1

(Z ′).

We note that IXT̃ ,n(x̃1)|∂D(d+1)n−1
consists of a single symbol, say w̃1. Let π(w̃1) = w1. Then

the configuration x′ = π(IXT̃ ,n(x̃1)) ∈ XH satisfies

x′|Dn = x|Dn and

x′|∂D(d+1)n−1
= w1.

3. Patching of an arbitrary pattern inside a configuration with non-maximal range.

We will first prove that there exists a walk on H from w1 to v1, ((w1 = u1), u2, . . . , (u3r+2 =

v1)). Since the graph is not bipartite, it has a cycle p1 such that |p1| ≤ r − 1 and is odd.

Let v′ be a vertex in p1. Then there exist walks p2 and p3 from w1 to v′ and from v′ to v1

respectively such that |p2|, |p3| ≤ r − 1. Consider any vertex w′ ∼H v1. If 3r + 1− |p2| − |p3|
is even then the walk

p2 ? p3(?(v1, w
′, v1))

3r+1−|p2|−|p3|
2

103



and if not then the walk

p2 ? p1 ? p3(?(v1, w
′, v1))

3r+1−|p1|−|p2|−|p3|
2

is a walk of length 3r + 1 in H from w1 to v1. This is the only place where we use the fact

that H is not bipartite. If it were bipartite, then we would require that x′~0 and y′~0 have to be

in the same partite class to construct such a walk.

Given such a walk the configuration z given by

z|D(d+1)n
= x′|(d+1)n

z|Dc
(d+1)n+3r

= y′|Dc
(d+1)n+3r

z|∂D(d+1)n+i−2
= ui for all 1 ≤ i ≤ 3r + 2

is an element of XH for which z|Dn = x′|Dn = x|Dn and z|Dc
(d+1)n+3r+k

= y′|Dc
(d+1)n+3r+k

=

y|Dc
(d+1)n+3r+k

.

We now return to the proof of Theorem 4.2.4. Let µ be an ergodic probability measure adapted

to XH with positive entropy.

Suppose sl~ei(x) = θi almost everywhere. By Lemma 4.6.1, θi < 1 for all 1 ≤ i ≤ d. Let

θ = maxi θi and 0 < ε < 1
4 (1− θ). Denote by Sd−1, the sphere of radius 1 in Rd for the l1 norm.

Since Sd−1 is compact in Rd we can choose a finite set {~v1, ~v2, . . . , ~vt} ⊂ Sd−1 such that for all

~v ∈ Sd−1 there exists some 1 ≤ i ≤ t satisfying ‖~vi − ~v‖1 < ε. By Corollary 4.5.3 for all ~v ∈ Sd−1

lim
n−→∞

1

n
hx(~0, bn~vc) ≤ θ

almost everywhere. By Egoroff’s theorem [18] there exists N0 ∈ N such that for all n ≥ N0 and

1 ≤ i ≤ t
µ({x ∈ XH | hx(~0, bn~vic) ≤ nθ + nε for all 1 ≤ i ≤ t}) > 1− ε. (4.6.2)

Let ~v ∈ ∂Dn−1 and 1 ≤ i0 ≤ t such that | 1n~v − ~vi0 | < ε. If for some x ∈ XH and n ∈ N

hx(~0, bn~vi0c) ≤ nθ + nε

then

hx(~0, b~vc) ≤ hx(~0, bn~vi0c) + dnεe ≤ nθ + 2nε+ 1.
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By Inequality (4.6.2) we get

µ
(
{x ∈ XH | hx

(
~0, b~vc

)
≤ nθ + 2nε+ 1 for all ~v ∈ ∂Dn−1}

)
> 1− ε

for all n ≥ N0. Therefore for all n ≥ N0 there exists x(n) ∈ supp(µ) such that

Range∂Dn−1

(
x(n)

)
≤ 2nθ + 4nε+ 2 < 2n(1− ε) + 2.

Let x ∈ XH and n0 ∈ N. It is sufficient to prove that µ([x]Dn0−1) > 0. Suppose r := |H|. Choose

k ∈ N such that

n0(d+ 1) + 3r + k + 1 ≥ N0

2 (n0(d+ 1) + 3r + k + 1) (1− ε) + 2 ≤ 2k.

Then by Lemma 4.6.2 there exists z ∈ XH such that either

z~j =

x~j if ~j ∈ Dn0

x
(n0(d+1)+3r+k+1)
~j

if ~j ∈ Dc
n0(d+1)+3r+k

or

z~j =

x~j+~e1 if ~j ∈ Dn0

x
(n0(d+1)+3r+k+1)
~j

if ~j ∈ Dc
n0(d+1)+3r+k.

In either case (z, x(n0(d+1)+3r+k+1)) ∈ ∆XH . Since µ is adapted to XH, z ∈ supp(µ). In the first

case we get that µ([x]Dn0−1) = µ([z]Dn0−1) > 0. In the second case we get that

µ([x]Dn0−1) = µ(σ~e1([x]Dn0−1)) = µ([z]D(n0−1)−~e1) > 0.

This completes the proof.

Every shift space conjugate to an entropy minimal shift space is entropy minimal. However a

shift space X which is conjugate to XH for H which is connected and four-cycle free need not even

be a hom-shift. By following the proof carefully it is possible to extract a condition for entropy

minimality which is conjugacy-invariant:

Theorem 4.6.3. Let X be a shift of finite type and c a continuous sub-cocycle on X with the

property that c(·,~i) ≤ ‖~i‖1 for all ~i ∈ Zd and for every ergodic probability measure µ adapted to X

1. If slc~ei(x) = 1 almost everywhere for some 1 ≤ i ≤ d then hµ < htop(X).

2. If slc~ei(x) < 1 almost everywhere for all 1 ≤ i ≤ d then supp(µ) = X.
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Then X is entropy minimal.

Here is a sketch: By Proposition 4.2.1 and Theorems 4.2.2, 4.2.3 it is sufficient to prove that

every ergodic measure of maximal entropy is fully supported. If X is a shift of finite type satisfying

the hypothesis of Theorem 4.6.3 then it is entropy minimal because every ergodic measure of

maximal entropy of X is an ergodic probability measure adapted to X; its entropy is either smaller

than htop(X) or it is fully supported. To see why the condition is conjugacy invariant suppose

that f : X −→ Y is a conjugacy and c ∈ CY satisfies the hypothesis of the theorem. Then by

Proposition 4.5.5 it follows that f?(c) ∈ CX satisfies the hypothesis as well.

Proof of Theorem 4.1.4. By Proposition 4.1.5 we can assume that H is connected. Consider some

(x, y) ∈ ∆XH . By Corollary 4.4.3 there exist (x̃, ỹ) ∈ ∆XEH
such that π(x̃) = x and π(ỹ) = y.

It is sufficient to prove that there is a chain of pivots from x̃ to ỹ. We will proceed by induction

on
∑
~i∈Zd dEH(x̃~i, ỹ~i). The induction hypothesis (on M) is : If

∑
~i∈Zd dEH(x̃~i, ỹ~i) = 2M then there

exists a chain of pivots from x̃ to ỹ.

We note that dEH(x̃~i, ỹ~i) is even for all ~i ∈ Z2 since there exists ~i′ ∈ Zd such that x̃~i′ = ỹ~i′ and

hence x̃~i and ỹ~i are in the same partite class of EH for all ~i ∈ Zd.
The base case (M = 1) occurs exactly when x̃ and ỹ differ at a single site; there is nothing to

prove in this case. Assume the hypothesis for some M ∈ N.

Consider (x̃, ỹ) ∈ ∆XEH
such that

∑
~i∈Zd

dEH(x̃~i, ỹ~i) = 2M + 2.

Let

B = {~j ∈ Zd | x̃~j 6= ỹ~j}

and a vertex ṽ ∈ EH. Without loss of generality we can assume that

max
~i∈B

dEH(ṽ, x̃~i) ≥ max
~i∈B

dEH(ṽ, ỹ~i). (4.6.3)

Consider some ~i0 ∈ B such that

dEH(ṽ, x̃~i0) = max
~i∈B

dEH(ṽ, x̃~i).

Consider the shortest walks (ṽ = ṽ1, ṽ2, . . . , ṽn = x̃~i0) from ṽ to x̃~i0 and (ṽ = ṽ′1, ṽ
′
2, . . . , ṽ

′
n′ = ỹ~i0)

from ṽ to ỹ~i0 . By Assumption (4.6.3), n′ ≤ n. Since these are the shortest walks on a tree, if

ṽ′k = ṽk′ for some 1 ≤ k ≤ n′ and 1 ≤ k′ ≤ n then k = k′ and ṽl = ṽ′l for 1 ≤ l ≤ k. Let

k0 = max{1 ≤ k ≤ n′ | ṽ′k = ṽk}.

106



Then the shortest walk from x̃~i0 to ỹ~i0 is given by x̃~i0 = ṽn, ṽn−1, ṽn−2, . . . , ṽk0 , ṽ
′
k0+1, . . . , ṽ

′
n′ = ỹ~i0 .

We will prove for all ~i ∼ ~i0, x̃~i = ṽn−1. This is sufficient to complete the proof since then the

configuration

x̃
(1)
~j

=

x̃~j if ~j 6=~i0

ṽn−2 if ~j =~i0,

is an element of XEH , (x̃, x̃(1)) is a pivot and

n+ n′ − 2k0 − 2 = dEH(x̃
(1)
~i0
, ỹ~i0) < dEH(x̃~i0 , ỹ~i0) = n+ n′ − 2k0

giving us a pair (x̃(1), ỹ) such that∑
~i∈Zd

dEH(x̃
(1)
~i
, ỹ~i) =

∑
~i∈Zd

dEH(x̃~i, ỹ~i)− 2 = 2M.

There are two possible cases:

1. ~i ∈ B: Then dEH(ṽ, x̃~i) = dEH(ṽ, x̃~i0)− 1 and x̃~i ∼EH x̃~i0 . Since EH is a tree, x̃~i = ṽn−1.

2. ~i /∈ B: Then x̃~i = ỹ~i and we get that dEH(x̃~i0 , ỹ~i0) = 2. Since x̃~i ∼EH x̃~i0 , the shortest walk

joining ṽ and x̃~i must either be ṽ = ṽ1, ṽ2, . . . , ṽn−1 = x̃~i or ṽ = ṽ1, ṽ2, . . . , ṽn = x̃~i0 , ṽn+1 = x̃~i.

We want to prove that the former is true. Suppose not.

Since ỹ~i0 ∼EH x̃~i and ~i0 ∈ B, the shortest walk from ṽ and ỹ~i0 is ṽ = ṽ1, ṽ2, . . . , ṽn =

x̃~i0 , ṽn+1 = x̃~i, ṽn+2 = ỹ~i0 . This contradicts Assumption (4.6.3) and completes the proof.
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Chapter 5

Further Directions

5.1 Markov Random Fields and Gibbs States with Nearest
Neighbour Interactions

In Chapter 2 we introduced Markov cocycles and used them to study Markov random fields and

Gibbs states with nearest neighbour interactions. When the underlying configuration space is a

shift space with the pivot property the space of shift-invariant Markov cocycles is finite dimensional;

it can act as a substitute for shift-invariant nearest neighbour interactions for giving a description

of the specification “using finitely many parameters”. In Chapter 3 we introduced a new notion

of folding called strong config-folding and used it to generalise the Hammersley-Clifford theorem

when the underlying graph is bipartite.

5.1.1 Supports of Markov Random Fields

Which shift spaces can be the support of a shift-invariant Markov random field on the Cayley graph

of Zd? A necessary condition is that they must be topological Markov fields which are the support

of some shift-invariant probability measure. For d = 1 this condition is sufficient as well and the

support of shift-invariant Markov random fields are further characterised as the non-wandering

nearest neighbour shifts of finite type [12]. However we do not know whether the condition is

sufficient in higher dimensions. Also: Suppose a shift of finite type is the support of some shift-

invariant Markov random field. Must it also be the support of a shift-invariant Gibbs state for

some shift-invariant nearest neighbour interaction?

5.1.2 Algorithmic Aspects

Suppose we are given a nearest neighbour shift of finite type X ⊂ AZd
with the pivot property

along with its globally allowed patterns on {~0} ∪ ∂{~0}. Is there an algorithm to determine the

dimension of MZd

X ? If so, is there a way to decide which of the shift-invariant Markov cocycles have
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a corresponding fully supported shift-invariant probability measure on the subshift? In case the

subshift has a safe symbol, such an algorithm can be derived from the proof of the Hammersley-

Clifford Theorem [43] and also from Lemma 3.1 in [15]. More generally, in case the subshift strongly

config-folds to {?}Zd
for some ? ∈ A such an algorithm can be derived from the proof of Theorem

3.3.2.

5.1.3 Markov Random Fields for other Models

There are other models for which it would be interesting to get a good description of the Markov

random fields and Gibbs states. One such family is the r-colourings of Zd with r ≥ 2d+2. The space

of domino tilings of Z2 is another interesting model. For these examples we know the generalised

pivot property (defined in Subsection 5.2.4) holds, so the space of shift-invariant Markov cocycles

is finite dimensional. We believe that some of the techniques developed Chapters 2 and 3 will be

useful in studying other systems.

5.1.4 Changing the Underlying Graph

Our results in Chapter 2 were dependent on the structure of the standard Cayley graph of Zd.
How does the underlying graph affect our results? What happens if we choose a different set of

generators?

Further, by Theorems 3.3.1 and 3.3.2 we have generalised the Hammersley-Clifford Theorem,

but only when the graph G is bipartite. Can this be generalised beyond the bipartite case? Note

that G being bipartite is used in many critical parts of the proof e.g. the construction of the elements

xv in Lemma 3.3.3, construction of the interaction in Lemma 3.3.4 etc.

5.1.5 Mixing Properties of Subshifts and the Dimension of the Invariant
Markov Cocycles

In Section 2.8, we constructed a subshift such that the dimension of the space of shift-invariant

Markov cocycles is uncountable. However this subshift has poor mixing properties (See [4] for a

discussion of some mixing properties of Zd-subshifts). On the other hand the safe symbol assump-

tion implies that the space of shift-invariant Markov cocycles is the same as the space of Gibbs

cocycles with shift-invariant nearest neighbour interactions (and hence finite dimensional). Are

there some natural mixing conditions for shift spaces which imply that the space of shift-invariant

Markov cocycles is finite-dimensional?

5.1.6 Identifying Hammersley-Clifford Spaces

Suppose a finite graph H can be folded into a single vertex (with or without a loop) or an edge. We

have proved that for any bipartite graph G the space Hom(G,H) is Hammersley-Clifford. We have

also shown that the strong config-folds and strong config-unfolds of Hammersley-Clifford spaces
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are Hammersley-Clifford spaces as well. Following [6] we will call a graph H stiff if it cannot be

folded anymore. Fixing a particular domain graph say Z2, is it possible to classify all stiff graphs H
for which Hom(Z2,H) is Hammersley-Clifford? What if we want Hom(G,H) to be Hammersley-

Clifford for all bipartite graphs G?

5.2 Hom-shifts, Entropy Minimality and the Pivot Property

In Chapter 4 we proved entropy minimality and the pivot property for a special class of hom-shifts

viz. XH where H is a finite connected four-cycle free graph.

5.2.1 Identification of Hom-Shifts

Can we determine when a shift space is conjugate to a hom-shift?

Being conjugate to a hom-shift lays many restrictions on the shift space, for instance on its

periodic configurations. Consider a conjugacy f : X −→ XH where H is a finite undirected graph.

Let Z ⊂ XH be the set of configurations invariant under {σ2~ei}di=1. Then there is a bijection

between Z and LA(XH) where A is the rectangular shape

A := {
d∑
i=1

δi~ei | δi ∈ {0, 1}}

because every pattern in LA(XH) extends to a unique configuration in Z. More generally given a

graph H it is not hard to compute the number of periodic configurations for a specific finite-index

subgroup of Zd. Moreover periodic points are dense in these shift spaces and there are algorithms

to compute approximating upper and lower bounds of their entropy [19, 30]. Thus the same holds

for the shift space X as well. We are not familiar with nice decidable conditions which imply that

a shift space is conjugate to a hom-shift.

5.2.2 Hom-Shifts and Strong Irreducibility

Which hom-shifts are strongly irreducible?

We know two such conditions:

1. [6] If H is a finite graph which folds into H′ then XH is strongly irreducible if and only if XH′

is strongly irreducible. This reduces the problem to graphs H which are stiff. For instance if

H is dismantlable, then XH is strongly irreducible.

2. [5] XH is single site fillable. A shift space XF ⊂ AZ
d

is said to be single site fillable if for all

patterns a ∈ A∂{~0} there exists a locally allowed pattern in XF , b ∈ AD1 such that b|∂{~0} = a.

In case XF = XH for some graph H then it is single site fillable if and only if given vertices

v1, v2, . . . , v2d ∈ H there exists a vertex v ∈ H adjacent to all of them.
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It follows that XK5 is single site fillable and hence strongly irreducible for d = 2. In fact strong

irreducibility has been proved in [5] for shifts of finite type under a property weaker than single

site fillability called TSSM. This does not cover all possible examples. For instance it was proved

in [5] that XK4 is strongly irreducible for d = 2 even though it is not TSSM and K4 is stiff. We do

not know if it is possible to verify whether a given hom-shift is TSSM.

We remark that results about TSSM are in contrast to the results obtained in Chapter 4. It

can be concluded from the results in Chapter 4 that XH is not even block-gluing (a weaker mixing

property than strong irreducibility) when H is four-cycle free.

5.2.3 Hom-Shifts and Entropy Minimality

Given a finite connected graph H when is XH entropy minimal?

We have provided some examples in Chapter 4:

1. H can be folded to a single vertex with a loop or a single edge. (Proposition 4.3.4)

2. H is connected and four-cycle free. (Theorem 4.1.2)

This does not provide the complete picture. For instance XK4 is strongly irreducible when d = 2

and hence entropy minimal even though K4 is stiff and not four-cycle free. A possible approach

might be via identifying the right sub-cocycle and Theorem 4.6.3.

Conjecture: Let d = 2 and H be a finite connected graph. Then XH is entropy minimal.

5.2.4 Hom-Shifts and the Pivot Property

We had provided some examples of graphs H for which the shift space XH has the pivot property

in Section 2.2.2. In Chapter 4 we gave two further sets of examples:

1. H can be folded to a single vertex with a loop or a single edge. (Proposition 4.3.5)

2. H is four-cycle free. (Theorem 4.1.4)

It is not true that all hom-shifts have the pivot property. The following was observed by Brian

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

Figure 5.1: Frozen Pattern

Marcus: Recall that Kn denotes the complete graph with n vertices. XK4 , XK5 do not possess the

pivot property if the dimension is 2. For instance consider a configuration in XK5 which is obtained

by tiling the plane with the pattern given in Figure 5.1. It is clear that the symbols in the box can
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be interchanged but no individual symbol can be changed. Therefore XK5 does not have the pivot

property. However both XK4 and XK5 satisfy a more general property:

A shift space X is said to have the generalised pivot property if there is an r ∈ N such that for

all (x, y) ∈ ∆X there exists a chain (x1 = x), x2, x3, . . . , (y = xn) ∈ X such that xi and xi+1 differ

at most on some translate of Dr.

If a shift space X satisfies this generalised property then MZd

X is a finite-dimensional vector

space. It can be shown that that any nearest neighbour shift of finite type X ⊂ AZ has the

generalised pivot property. In higher dimensions this is not always true; consider the subshift Y

constructed in Section 2.8; since MZd

Y is infinite dimensional it follows that Y does not have the

generalised pivot property. It is not hard to prove that any single site fillable nearest neighbour

shift of finite type has the generalised pivot property. This can be generalised further: in [5] it is

proven that every shift space satisfying TSSM has the generalised pivot property. The space of

domino tilings forms another interesting and well known example for a subshift with the generalised

pivot property [17].

For which graphs H does XH satisfy the pivot property? What about the generalised pivot

property?
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