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In this talk we will be reporting results with Tom Meyerovitch
(2020), with Spencer Unger (2021) and Scott Sheffield (2021).
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What kind of tilings will we look at in this talk?

There are two kinds of tilings which people study. The first kind is
like Robinson’s tilings.

1 They are often uniquely ergodic.
2 They are essentially minimal.
3 They have zero entropy.
4 They have no periodic points.

3 / 90



What kind of tilings will we look at in this talk?

The second kind is like that of domino tilings.

1 Lot of invariant probability measures.
2 Lots of subsystems
3 Positive entropy
4 Enough periodic points to achieve the entropy.
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Two kinds of tilings

Robinson’s Tiling Domino tiling

Uniquely ergodic Lot of invariant probability measures
Essentially minimal Lot of subsystems

Zero entropy Positive entropy
No Periodic points Enough periodic points to achieve the entropy.
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Domino Tilings

In this talk we will discuss the second kind of tilings.

Domino tilings are tilings of Zd by rectangular parallelopipeds one
of whose side is 2 and the rest are 1.
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Let us observe quickly that domino tilings have a lot of probability
measures on them and positive entropy.
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It has a lot of invariant probability measures and positive
entropy

Divide Zd into a grid with rectangles of size 3× 2. Consider all
tilings we can obtain by arbitrarily placing one or the other tiling in
the grid independently. This already tells us that the space of
tilings has positive entropy and a lot of invariant probability
measures.
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(d = 2)

A lot is known for d = 2.

The entropy can be computed (Kastelyn (1961) and
Temperly-Fisher(1961)). It is∫ 1

0

∫ 1

0
log(4− 2 cos(2πα1)− 2 cos(2πα2))dα1dα2.

It has a unique measure of maximal entropy (Burton and Pemantle
1993).

One can even compute the measure of cylinder sets for the
measure of maximal entropy (Kenyon 1997) and much more
(Cohn, Kenyon and Propp 2000).
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So we have a system for which we understand the measure of
maximal entropy. We can also compute the number of periodic
points.

Measure of
maximal entropy

Periodic
Points

?

The space of all domino tilings

But we are left with an entire world to explore. This was one of
the starting points of my work with Tom Meyerovitch.
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The setting

To describe this work we will need some basic definitions.

A Polish space is a second countable metrisable space (like a
manifold or the Cantor set).

Given a measurable Zd action T on a Polish space X , we say that
X ′ ⊂ X is universally null if µ(X ′) = 0 for all invariant probability
measures µ.

We will denote the space of domino tilings of Zd by X d and the
shift action by σ.

We denote by h(X ,T ) the (Gurevich) entropy of (X ,T ), that is,
the supremum of the measure theoretic entropy on X . By the
variational principle, it is equal to the topological entropy when X
is compact and the action is continuous.
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Chandgotia-Meyerovitch (2020)

A Polish space is a second countable metrisable space (like a manifold or the Cantor set).

Given a measurable Zd action T on a Polish space X , we say that X ′ ⊂ X is universally null if µ(X ′) = 0 for all
invariant probability measures µ.

We will denote the space of domino tilings of Zd by Xd and the shift action by σ.

We denote by h(X ,T ) the (Gurevich) entropy of (X ,T ), that is, the supremum of the measure theoretic entropy
on X By the variational principle, it is equal to the topological entropy when X is compact and the action is
continuous.

Theorem (Chandgotia, Meyerovitch 2020)

Suppose (X ,T ) is a free Z2 action such that

h(X ,T ) < h(X 2, σ).

Then there is an equivariant embedding from (X ,T ) to (X 2, σ) up
to a universally null set.
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Flexibility

Theorem (Chandgotia, Meyerovitch 2020)

Suppose (X ,T ) is a free Z2 action such that

h(X ,T ) < h(X 2, σ).

Then there is an equivariant embedding from (X ,T ) to (X 2, σ) up
to a universally null set.

In other words (X 2, σ) is almost Borel universal.This answered a question of Şahin and
Robinson (who proved universality of strongly irreducible shifts).

In fact our result is very flexible and versions of this apply to many more systems like
the space of 3-colourings, other rectangular tilings and also to non-symbolic spaces
like those with non-uniform specification.

The latter was also prover by Burguet (2020) and was a question asked by Quas-Soo
(2012) in a remarkable paper where they showed universality under some added
conditions (which applied to actions like quasihyperbolic toral automorphisms). This
was a large part of our inspiration.
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Flexibility

Theorem (Chandgotia, Meyerovitch 2020)

Suppose (X ,T ) is a free Z2 action such that

h(X ,T ) < h(X 2, σ).

Then there is an equivariant embedding from (X ,T ) to (X 2, σ) up to a universally
null set.

In other words (X 2, σ) is almost Borel universal.

In fact our result was very flexible and applied to many more systems like the space of
3-colourings, other rectangular tilings and also to non-symbolic spaces like those with
non-uniform specification.

To prove universality of a shift space we need the shift space be
very flexible.
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The road to flexibility

When we began this problem, I spoke to Benjamin Weiss about
possible approaches to the question.

Roughly, what he said is that if there is a constant N such that
given patterns a1, a2, . . . an on boxes (separated by N) you can
extend it to a valid element of the shift space, then you will have
universality.

a1
a3

a4a5a6

a7

a2>N

This was disappointing because nothing like this can hold for
domino tilings.
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This was disappointing because nothing like this can hold for
domino tilings.

This pattern completely determines what can be placed for distance N/2

Arbitrary gluing of
separated patterns can't

be done

N

a1
a3

a4a5a6

a7

a2
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What do we need for universality: Large number of flexible
patterns

It follows from work by Kastelyn (1961), Temperley-Fisher (1961)
and Burton-Pemantle (1993) that the number of tilings of a
2N × 2N box approximates the entropy, that is,

1

(2N)2
log (the number of tilings of a 2N × 2N box)→ htop(X

2),

that is,

in the computation of entropy we only need to care
about the patterns as on the right.
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Patterns like these on boxes separated by distance 3 can be (easily)
extended to a domino tiling of the Z2 lattice.
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All of this can also be extended to higher dimensions.
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Extension to higher dimensions

With Scott Sheffield (2021), we were able to extend this to higher
dimensions. Precisely we proved that for all d ≥ 2

1

(2N)d
log
(

the number of tilings of a (2N)d box
)
→ htop(X

d ).

By general results from Chandgotia-Meyerovitch we have that

Theorem

Suppose (X ,T ) is a free Zd action such that

h(X ,T ) < h(X d , σ).

Then there is an equivariant embedding from (X ,T ) to (X d , σ)
up to a universally null set.

Irrespective of the dimension (X d , σ) is almost Borel universal
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It turns out that almost Borel universal spaces are unique up to
isomorphism (modulo universally null sets).

This follows from
elementary considerations and Cantor-Bernstein type arguments.
(Hochman)
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maximal entropy

Periodic
Points
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Domino tilings: Xd
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Measure of
maximal entropy

Periodic
Points

The unique almost Borel
universal space of entropy

h(Xd)

Domino tilings: Xd

Universallynull

When I presented these result, Mike Boyle asked me what can you
say about the dark matter (universally null set)?

The universally null set is a very rich part of the space which
carries all the infinite measures and is often very difficult to handle.
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“Dark matter?”

Measure of
maximal entropy

Periodic
Points

The unique almost Borel
universal space of entropy

h(Xd)

Domino tilings: Xd

Universallynull

Mike Boyle was referring to a wonderful result by Mike Hochman
which strengthened Krieger’s generator theorem (1970) and his
own previous results about almost Borel universality.

Theorem (Hochman 2015)

Suppose (X ,T ) is a free Z action and (Y , σ) be a mixing SFT
such that

h(X ,T ) < h(Y , σ).

Then there is an equivariant embedding from (X ,T ) to (Y , σ).

In other words there was no need to throw away the null set.
Mixing SFTs in one dimension are Borel universal.
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A very curious open question

Mike Hochman mentions a wonderful open question here which is
wide open.

All the maps described here are Borel.

The entropy of the full 2-shift and the proper 3-colourings of Z is
the same.

By the previous result they are Borel isomorphic modulo the
periodic points.

Are they topologically conjugate?
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“About the dark matter?”

Theorem (Chandgotia-Unger 2021)

Suppose (X , σ) is a Zd shift space such that h(X , σ) < h(X d , σ).
Then there is an equivariant embedding from free(X , σ) to
(X d , σ).

61 / 90



Conjecture

Measure of
maximal entropy

Periodic
Points

The unique Borel universal
space of entropy h(Xd)

Domino tilings: Xd
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More can be proved if we do not insist of embeddings.
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Theorem (Chandgotia-Unger 2021)

Suppose (X ,T ) is a free Zd action. Then there is an equivariant
map from (X ,T ) to free(X d , σ).

This extends to various kinds of tilings by rectangles, the space of
proper 3 colourings and bi-infinite Hamiltonian paths (giving us
nice orbit equivalences to a Z action in the Borel category).

This answers questions raised by Gao and Jackson (2015). Some
of these results have been announced by Gao, Jackson, Krohne and
Seward. Such results were proven by Prikhod’ko(1999), Şahin
(2009), Şahin-Robinson(2003) (in the ergodic case) and by
Chandgotia-Meyerovitch (2020) (up to a universally null set).

The result about bi-infinite Hamiltonian paths appears in recent
work by Downarowicz, Oprocha and Zhang in the ergodic category.
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Theorem (Chandgotia-Unger 2021)

Suppose (X ,T ) is a free Zd action. Then there is an equivariant
map from (X ,T ) to free(X d , σ).

This extends to various kinds of tilings by rectangles, the space of
proper 3 colourings and bi-infinite Hamiltonian paths (giving us
nice orbit equivalences to a Z action in the Borel category).

This answers questions raised by Gao and Jackson (2015). Some
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But how difficult does a universally null set make things?
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Why is going from almost Borel universal to Borel
universal so hard?

Many tools available in ergodic theory disappear when dealing with
Borel dynamics.

For instance, for a free probability Zd action (X ,T ) we have the
Rokhlin’s lemma which says that for all n ∈N we can find a

subset A ⊂ X such that the tower T
~i (A); |~i | < n almost partitions

the space X (up to a small error).

By a careful choice of the error parameter and n one can ensure by
Borel Cantelli lemma that a point lies in the error set or on the
boundary of the towers at most finitely many times (up to a
universally null set).

By a result of Gao, Jackson, Krohne and Seward (2015) nothing like this can hold
even for very nice actions (like the free part of the full shift). They suggest a way out
where the boundary of the Rokhlin towers become very “fractally”! This is an
essential component of our work.
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We are also missing a Shannon-McMillan theorem in this category.
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Not all the results go fully to the very general context of
rectangular tilings. Let me end with some open directions.
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Can we always extend a tiling to that of a big box?
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We also know this for dominos in all dimensions.
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Coprime rectangular tiling shifts

Let T1,T2, . . . ,Tm be a set of rectangles such that

gcd of the ith side length of T1, T2, . . . , Tm = 1 for all i .

We call the space of tilings coprime rectangular tiling shifts and
denote it by XT1,T2,...,Tm .

These coprime rectangular tiling shifts appear in the context of Zd

Alpern’s lemma by Prikhod’ko (1999) and Şahin (2009).

Proving that tilings by these shapes extend to tilings of a box
implies topological mixing for such systems.
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Coprime rectangular tiling shifts

This is known in two dimensions when there are only two tiles
(Einsedler 2001). Nevertheless it should be an accessible question.
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The final conjecture

Let T1,T2, . . . ,Tm be a set of rectangles such that

gcd of the ith side length of T1, T2, . . . , Tm = 1 for all i .

We call the space of tilings coprime rectangular tiling shifts and
denote it by XT1,T2,...,Tm . Prove that there is a k such that

1

(kN)d
log
(

the number of tilings of a (kN)d box
)
→ htop(XT1,T2,...,Tm).
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Thank you for listening.
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