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Height functions and domino tilings

Dominos are rectangular parallelepipeds in Zd , one of whose sides
is 2 and the rest are 1.

We want to study what a uniform tiling of a simply connected
region by dominos looks like under various boundary conditions.
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From “A Variational Principle for Domino Tilings” by Cohn,
Kenyon and Propp

Figure : Notice that the tiling is very homogeneous in nature 4 / 126



From “A Variational Principle for Domino Tilings” by
Cohn, Kenyon and Propp

Figure : The tiling is very rigid close to the boundary and much more
“random” close to the center
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The effect of boundary conditions is, however, not entirely trivial...
(Kastelyn 1961)
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d = 2

Let us focus on d = 2 where we understand a lot about this
question thanks to Cohn, Kenyon and Propp.

The basic stepping stone for this are height functions.
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Height functions for d = 2

8 / 126



Height functions for d = 2

Put a clockwise spiral on even sites and an anticlocwise spiral on
odd sites.
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Height functions for d = 2

Now walk along the tiling increasing the height by 1 in the
direction of the spiral.
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Cohn, Kenyon and Propp’s Variational Principle

Let R ⊂ R2 be a simply connected region

and hb : ∂R → R be
2-Lipschitz. There is a 2-Lipschitz function flim : R → R which
extends it with the following property:

Let Rn be a subset of the Z2-grid (scaled by 1/n) which
approximates R and hn : ∂Rn → Z approximate hb.

Then the height function corresponding to a uniformly picked
dimer tiling of Rn with boundary conditions hn converges to flim in
probability.

The function flim has an explicit description (which we will skip).
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In particular, for nice regions R one can determine the number of
dimer tilings of the approximating regions Rn with boundary
conditions hn.
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This was generalised by Scott Sheffield to more general height
functions (which in particular handles uniform homomorphisms to
Z).
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We want to do this in higher dimensions.

But first, can one define height functions for d > 2?
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Height functions for d = 2

Height function measure how difficult it is to put two tilings
together.

Down a brick-wall formation the height function keeps
on increasing or decreasing. This says that it is difficult to put two
out-of-phase brick-wall formations next to each other.
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No such height functions exists in higher dimensions

In higher dimensions we can always have dominos sticking out of
the plane.

So along a plane there are no restrictions on what tilings can be
put next to each other.

Thus there cannot be any reasonable notion of a height function.
This can be proven formally (ideas from Schmidt ’1998, Tom
Meyerovitch).
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But there are substitutes.
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d − 1 dimensional cocycle for tilings of Zd

Look at the pattern we get on the hyperplane cutting through a
given tiling. Choose a normal for the hyperplane.

2M

2N
Top Face

Left Face Right Face

View across the hyperplane
A domino passes
through at this
square
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d − 1 dimensional cocycle for tilings of Zd

If a domino passes from an even site to an odd site along the
choice of normal, place 1 on that site. If it is against the direction
of the normal, place −1 on that site.

2M

2N
Top Face

Left Face Right Face

View across the hyperplane
A domino passes
through at this
square

1 1

-1

-1
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Flux

The flux passing through the hyperplane is the sum of the numbers
that we get.

2M

2N
Top Face

Left Face Right Face

View across the hyperplane
A domino passes
through at this
square

1 1

-1

-1

Flux through the hyperplane is
0
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Flux

Flux captures how difficult it is to go from one tiling along a
hyperplane to another tiling along a hyperplane.
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This gives a substitute for height functions and helps us formulate
appropriate conjectures for domino tilings for d > 2.
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Conservation of Flux

For an appropriate choice of normals the net flux passing through
an even sized box is zero.

Thus if the tiling is flat on all faces except the left and the right
face,

the flux through the left face = the flux through the right face.

2M

2N

Left Face Right Face

42 / 126



But can we prove anything with it?
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A tale of two entropies

Let Box2n be the tilings of {1, 2, . . . , 2n}d by dominos.

Let Alln be the patterns obtained on {1, 2, . . . , n}d by restricting
domino tilings of Zd .

Figure : An element of Box6 (on the left) and of All6 (on the right)
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A tale of two entropies

Figure : An element of Box6 (on the left) and of All6 (on the right)

Zd acts naturally on the space of domino tilings Xdom by
translations. The topological entropy of Xdom is given by the
formula

htop(Xdom) := lim
n→∞

1

(n)d
log |Alln|.

We define the box entropy as

hbox (Xdom) := lim
n→∞

1

(2n)d
log |Box2n|.
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The main theorem

Figure : An element of Box6 (on the left) and of All6 (on the right)

Theorem

htop(Xdom) = hbox (Xdom).

Further all elements of Alln can be
extended to a perfect domino tiling of a large enough box.
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All elements of Alln can be extended to a perfect domino
tiling of a large enough box.
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A longer introduction to the main result
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Further context: Ergodic theoretic questions and their
combinatorial counterparts

Our motivation comes from the ergodic theory of tiling spaces.

We will present the correspondence in a slightly more general
context.
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Rectangular tiling shifts

Let T be a set of rectangular parallelepipeds (called tiles) in Zd

such that for each coordinate direction, the g.c.d of the side
lengths of the tiles in that direction is 1.

XT will denote the set of tilings of Zd by elements of T .

These are called rectangular tiling shifts.

Examples:

1 Domino tilings.

2 Sets T which contain a singleton tile (called a monomer).
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A tale of three entropies: Topological entropy

Zd acts naturally on XT by translations.

Let Alln(T ) be the patterns obtained on {1, 2, . . . , n}d by
restricting tilings by T of Zd .

The topological entropy of XT can be calculated by the formula.

htop(XT ) := lim
n→∞

1

(n)d
log |Alln(T )|.
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A tale of three entropies: Periodic entropy

Let N be the product of the side lengths appearing in elements of
T .

Let PernN(T ) be the set of tilings of the nN-torus (Z/nNZ)d by
elements of T .

The periodic entropy of XT is given by

hPer(XT ) := lim
n→∞

1

(nN)d
log |PernN(T )|.
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A tale of three entropies: Box entropy

Let N be the product of the side lengths appearing in elements of
T .

Let BoxnN(T ) be set of tilings of {1, 2, . . . , nN}d by elements of
T .

The box entropy of XT is given by

hBox(XT ) := lim
n→∞

1

(nN)d
log |BoxnN(T )|.
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A tale of three entropies: The obvious inequalities

htop(XT ) := lim
n→∞

1

(n)d
log |Alln(T )|

hPer(XT ) := lim
n→∞

1

(nN)d
log |PernN(T )|.

hBox(XT ) := lim
n→∞

1

(nN)d
log |BoxnN(T )|.

AllnN(T ) ⊃ PernN(T ) ⊃ BoxnN(T )
htop(XT ) ≥ hPer(XT ) ≥ hBox(XT ). 64 / 126



A tale of three entropies: Monomers make life easy

In general

AllnN(T ) ⊃ PernN(T ) ⊃ BoxnN(T )
htop(XT ) ≥ hPer(XT ) ≥ hBox(XT ).

Suppose that K is the length of the longest side for a tile in T . If
T has a monomer then all elements of AllnN−K (T ) can be
extended to an element of BoxnN(T ) and hence

htop(XT ) = hPer(XT ) = hBox(XT ).
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A tale of three entropies: When is the topological entropy
computable?

I conjecture that this is true for all rectangular tiling shifts T .
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Why do we care?

If htop(XT ) = hPer(XT ) then one can construct algorithms to
approximate the topological entropy.

Following my work with Tom Meyerovitch, if
htop(XT ) = hBox(XT ) then XT can model any probability
preserving Zd action (under some necessary technical constraints
coming from the topological entropy).

We prove this for domino tilings.
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Proof of the easier result
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The easier result

We will first prove the easier result: hPer(Xdom) = htop(Xdom).

For this we need to compare the size of Per2n and All2n.

We prove that if we pick uniformly from All2n then

P(Per2n) ≥ exp(−cnd−1)

for some c > 0.
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Reflection among dominos

The main observation here is a very simple one. Domino tilings
can be reflected.
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Reflection positivity

Put the uniform probability measure on All2N .

Divide the inner
vertex boundary of {1, 2, 3, . . . , 2N}d into 2d equal parts:
∂1, ∂2, . . . , ∂2d .

∂1∂2

∂3 ∂4
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Reflection positivity: Uniform measure on All2N

There exists a tiling a of ∂1 such that

P(a on ∂1) ≥ e−cN
d−1

for some c dependent only on d .

∂1∂2

h

a
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Reflection positivity: Uniform measure on All2N ;
P(a on ∂1) ≥ e−cN

d−1

Suppose ∂1 and ∂2 are reflections of one another under the
hyperplane h.

For any tiling pattern b on h we have by symmetry and by the
Markov random field property,

P(a on ∂1 and reflection of a on ∂2 | b on h) = (P(a on ∂1 | b on h))2 .

∂1∂2 a
reflection of a

pattern b on
hyperplane h
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Reflection positivity: Uniform measure on All2N ;
P(a on ∂1) ≥ e−cN

d−1

P(a on ∂1 and reflection of a on ∂2 | b on h) = (P(a on ∂1 | b on h))2 .

Integrating on b, we have by the Jensen’s inequality

∂1∂2 a
reflection of a

P(a on ∂1 and reflection of a on ∂2) ≥ (P(a on ∂1))
2 ≥ e−2cN

d−1
.
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Reflection positivity: Periodic points have big (enough)
measure

Applying reflections on d − 1 coordinate hyperplanes

∂1

we get that

P(Per2N) ≥ e−2
d−1cNd−1

implying that

lim
N→∞

1

(2N)d
log |Per2N | = lim

N→∞

1

(2N)d
log |All2N |.
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The entropy of domino tilings is computable

Thus htop(Xdom) = hPer(Xdom). The entropy of Xdom is a
computable number.
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Reflection positivity is an old and highly specialised technique; it
doesn’t apply to any other tiling model.

It was used recently also by Lorenzo Taggi to show that correlation
between monomers in the dimer model (d > 2) does not decay.
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It was not important in this calculation that these be tilings of
{1, 2, . . . , 2N}d . We could prove a similar estimate for any box all

of whose side lengths are even.
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The (slightly more) harder part:

htop(Xdom) = hBox(Xdom).
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Introducing long rectangles

We need to prove that

lim
N→∞

1

(2N)d
log |Box2N | = lim

N→∞

1

(2N)d
log |All2N |.

1 An (N,M)-rectangle :-{1, 2, . . . , 2N} × {1, 2, . . . , 2M}d−1
2 The set of tilings (N,M)-rectangles is denoted by Box2N,2M .

3 The set of restrictions of tilings of Zd to (N,M)-rectangles is
denoted by All2N,2M .
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It is enough to understand long rectangles

We need to prove that

lim
N→∞

1

(2N)d
log |Box2N | = lim

N→∞

1

(2N)d
log |All2N |.

By subadditivity of |All2N,2M | and superadditivity of |Box2N,2M | it
can be shown that

lim
N→∞

1

(2N)d
log |Box2N | = lim

N,M→∞

1

(2N)(2M)d−1
log |Box2N,2M |

lim
N→∞

1

(2N)d
log |All2N | = lim

N,M→∞

1

(2N)(2M)d−1
log |All2N,2M |
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It is enough to understand long rectangles

We need to prove that

lim
N→∞

1

(2N)(2M)d−1
log |Box2N,2M | = lim

N→∞

1

(2N)(2M)d−1
log |All2N,2M |.

Pick uniformly from All2N,2M . It is sufficient to prove that

P(Box2N,2M) ≥ exp(−CM(Md−2N +Md−1)).
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All but the left and right faces are flat

Pick uniformly from All2N,2M . It is sufficient to prove that

P(Box2N,2M) ≥ exp(−CM(Md−2N +Md−1)).

Observe that when we reflect along hyperplanes parallel to the
smaller face on all other faces the tiling becomes flatter and flatter.

2M

2N
Top Face

Left Face Right Face

View of the top face

Reflecting hyperplane

Reflections are made on tilings of Z/2nZ× {1, 2, . . . , 2M}d−1.
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P(Box2N,2M) ≥ exp(−CM(Md−2N +Md−1)).

Observe that when we reflect along hyperplanes parallel to the
smaller face on all other faces the tiling becomes flatter and flatter.
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All but the left and right faces are flat

Pick uniformly from All2N,2M . It is sufficient to prove that

P(Box2N,2M) ≥ exp(−CM(Md−2N +Md−1)).

Observe that when we reflect along hyperplanes parallel to the
smaller face on all other faces the tiling becomes flatter and flatter.

2M

2N
Top Face

Left Face Right Face

View of the top face

Reflecting hyperplane

Reflections are made on tilings of Z/2nZ× {1, 2, . . . , 2M}d−1.
103 / 126



All but the left and right faces are flat

Pick uniformly from All2N,2M . It is sufficient to prove that

P(Box2N,2M) ≥ exp(−CM(Md−2N +Md−1)).

Observe that when we reflect along hyperplanes parallel to the
smaller face on all other faces the tiling becomes flatter and flatter.
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Reflections are made on tilings of Z/2nZ× {1, 2, . . . , 2M}d−1.
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All but the left and right faces are flat

By reflection positivity, for a uniform tiling from All2N,2M we have

P(all but the left and right faces are flat) ≥ exp(−cM(Md−2N)).

for some cM > 0.
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All but the left and right faces are flat

By reflection positivity, for a uniform tiling from All2N,2M we have
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Recall: d − 1 dimensional cocycle for tilings of Zd

1 An (N,M)-rectangle :-{1, 2, . . . , 2N} × {1, 2, . . . , 2M}d−1
2 The set of tilings (N,M)-rectangles is denoted by Box2N,2M .

3 The set of restrictions of tilings of Zd to (N,M)-rectangles is
denoted by All2N,2M .

2M

2N

Left Face Right Face
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Recall: d − 1 dimensional cocycle for tilings of Zd

Now look at the pattern we get on the hyperplane cutting through
a given tiling. Choose a normal for the hyperplane.

2M

2N
Top Face

Left Face Right Face

View across the hyperplane
A domino passes
through at this
square
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Recall: d − 1 dimensional cocycle for tilings of Zd

If a domino passes from an even site to an odd site along the
choice of normal, place 1 on that site. If it is against the direction
of the normal, place −1 on that site.

2M

2N
Top Face

Left Face Right Face

View across the hyperplane
A domino passes
through at this
square

1 1

-1

-1
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Recall: Flux

The flux passing through the hyperplane is the sum of the numbers
that we get.

2M

2N
Top Face

Left Face Right Face

View across the hyperplane
A domino passes
through at this
square

1 1

-1

-1

Flux through the hyperplane is
0
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Recall: Flux

Flux captures how difficult it is to go from one tiling along a
hyperplane to another tiling along a hyperplane.
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Recall: Conservation of Flux

For an appropriate choice of normals the net flux passing through
an (N,M)-rectangle is zero.

Thus if the tiling is flat on all faces except the left and the right
face,

the flux through the left face = the flux through the right face.

2M

2N

Left Face Right Face
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Reflection positivity is back: Zero flux

By reflecting along the sides and applying reflection positivity we
can assume that the flux through the left (and hence the right
face) is zero.

2M

2N

Left Face Right Face
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Reflection positivity is back: Zero flux

By reflecting along the sides and applying reflection positivity we
can assume that the flux through the left (and hence the right)
face is zero.

4M

2N

Left Face Right Face

From all that we have said, if a tiling is picked uniformly from
All2N,4M then

P(zero flux) ≥ exp(−CM(Md−2N +Md−1)).
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Irreducibility of equal flux component

Once the flux is fixed, the set of tiling patterns that we can see on
the left face form an irreducible chain.

Thus we can lengthen the (N, 2M)-rectangle to a (N +KM , 2M)
box and obtain an extension of any zero flux tiling to an element of
Box2N+2KM ,4M .

4M

2N+2KM

Left Face

Right Face

This completes the proof that

P(Box2N+2KM ,4M) ≥ exp(−CM(Md−2N +Md−1)).
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Extending an element of All2N to a tiling of a box
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First make all but one face flat
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First make all but one face flat
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First make all but one face flat
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First make all but one face flat
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First make all but one face flat
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First make all but one face flat

122 / 126



Finally use the irreducibility of flux components to make
the last face flat
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Summary

1 Domino tilings can model all free ergodic random fields of
appropriate entropy.

2 The box-entropy coincides with the topological entropy for
domino tilings.

3 All elements of All2N can be extended to a tiling of a large
enough box.

4 There is an analogue to height functions for higher
dimensional domino tilings (which we call flux).
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Future directions

1 Other rectangular tiling spaces!

2 Prove a variational principle.
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Thank you
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