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Can you guess?

Suppose I give you a sequence: 1,

1, 1, 1, 1, 1,

What comes next?

It is probably going to be 1.
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Can you guess?

What about this one: 1,

2, 3, 1, 2, 3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .

in which case it should have been 4.
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What about this one: 1, 2,

3, 1, 2, 3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .
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Be careful with your guesses.

We know that without enough information about how the
sequence comes about there is not much point in guessing.

But what if instead I give you the entire past of the sequence and
tell you before hand that the sequence is periodic. Then we can
always predict precisely.

Do we need to know the entire past to make this prediction?
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Predicting periodic sequences

Clearly, it would be enough to know the sequence along the even
integers because the restriction of periodic sequence to the even
integers is still periodic.

. . . , 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . .

?,×, 1,×, 3,×, 1,×, 3,×, 1,×, 3,×, . . .

Clearly it is not enough to know the sequence along the odd
integers.

?, 1,×, 3,×, 1,×, 3,×, 1,×, 3,×, . . .

We do not know after all which periodic sequences runs along the
odds.
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Can we cut down further?
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Predicting periodic sequences

A set Q ⊂N is called a PERIODIC-set if Q = {nk : k ∈N} for
some n ∈N.

A set P ⊂N is called a PERIODIC* if intersects every
PERIODIC-set. In other words PERIODIC*-sets contain at least
one multiple of every integer.

Even integers are PERIODIC* but odd integers are not
PERIODIC*.
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Predicting periodic sequences

A set Q ⊂N is called a PERIODIC-set if P = {nk : k ∈N} for
some n ∈N.

A set P ⊂N is called a PERIODIC* if intersects every
PERIODIC-set. In other words PERIODIC*-sets contain at least
one multiple of every integer. Fix such a P.

Suppose xi ; i ∈ Z is a periodic sequence with period p.

Now suppose that xi is constant for i ∈ P ∩ {nk : k ∈N} for
some n ∈N. But P is PERIODIC*. Hence it also contains a
multiple of np.

Hence we can decide what x0 is, given xi ; i ∈ P.
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In other words, a set can predict all periodic sequences if and only
if it is PERIODIC*.

A similar statement holds for processes arising from compact group
rotations in general.

30 / 126



Entropy and Prediction

By a process we mean a stationary process with a finite state space
unless stated otherwise.

Given a subset P ⊂N, a sequence of random variables Xi ; i ∈ P
will be denoted by XP .

Shannon entropy of a process is a measure of how unpredictable a
process is. Indeed, the Shannon entropy,

h(XZ) := H(X0 | XN) = 0

if and only if X0 is measurable with respect to XN.

Warning: The formula h(XZ) = H(X0 | XN) is true only for
finite valued processes. There are infinite entropy Gaussian
processes which can be predicted by their past.
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A generic process has zero entropy and is weakly mixing.

A stationary Gaussian process has zero entropy if and only if its
spectral measure does not have an absolutely continuous
component.
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Predictive sets

A set P ⊂ Z is called a predictive set if for all zero-entropy
processes XZ, X0 is measurable with respect to XP .

Equivalently, P is a predictive set if for all zero-entropy processes
XZ,

H(X0 | XP) = 0.

N is a predictive set.
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kN is predictive

The process XZ has zero entropy if and only if XkZ has zero
entropy.

Thus P is a predictive set if and only if kP is also a predictive set.

On the other hand P = kN + r can not even predict periodic
sequences for r which is not a multiple of k.
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P = kN + r is not predictive (when r is not a multiple of
k

In fact there exist zero entropy weak mixing processes (think of
this as a certain decay of correlation assumption) XZ such that X0

is independent of XkN+r .
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Here is something we still do not know about these sets.

Question

Suppose P is a predictive set. By definition for all zero entropy
processes XZ

H(X0 | XP) = 0.

Does there exists n ∈N such that for all zero entropy processes
XZ

H(X−n | XP) = 0?
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Some sufficient conditions.
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Return-time sets are predictive

Given a process YZ with U in its state space, we write

N(U, U) := {n ∈N : Prob(Y0 = Yn = U) > 0}.

A set A ⊂N is called a return-time set if A = N(U, U) for some
process.

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

kN is the return time for the periodic process

U1, U2, . . . , Uk , U1, U2, . . . , Uk , U1, U2, . . . , Uk , . . .

This generalises our observation that kN is a predictive set.
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An example of a predictive set

Given a process YZ with U in its state space, we write

N(U, U) := {n ∈N : Prob(Y0 = Yn = U) > 0}.

A set A ⊂N is called a return-time set if A = N(U, U) for some
process.

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

It is easy to see using this that if α ∈ R/Z and ε > 0 then the set

{n : nα mod 1 ∈ (−ε, ε)}.

In fact if P is predictive then

P ∩ {n : nα mod 1 ∈ (−ε, ε)}
is also predictive.
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Some necessary conditions
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SIP? sets

Given a sequence of natural numbers S = {si}i∈N ⊂N, we write

SIP(S) :=

{
∞

∑
i=1

εi si : εi ∈ {−1, 0, 1}
}
∩N.

A set P ⊂N is called SIP? if it intersects every SIP set.
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SIP? sets

SIP(S) :=

{
∞

∑
i=1

εi si : εi ∈ {−1, 0, 1}
}
∩N.

1 kN is SIP?: Given a sequence S = {si}i∈N ⊂N there exists
a subsequence si1 , si2 , . . . , sik (which are equal modulo k) such
that

k

∑
t=1

sit ∈ kN.

Thus SIP(S) ∩ kN 6= ∅.

2 if r��≡0 (mod k) then kN + r is not SIP∗: If a sequence
S ⊂ kN then SIP(S) ⊂ kN and SIP(S) ∩ (kN + r) = ∅.

3 SIP? sets have bounded gaps.
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SIP? sets have bounded gaps.

Suppose P is a set such that it does not have bounded gaps. Then
we can fit an SIP set in its complement.

P

s1 s2

s2-s1 s3-s2 s3+s2s2+s1

{ { {

s3
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Predictive sets are SIP?

Theorem (Chandgotia, Weiss)

Predictive sets are SIP?.

1 If r��≡0 (mod k) then kN + r is not SIP∗: Thus we have
generalised the fact that kN + r is not predictive.

2 SIP? sets have bounded gaps. Thus predictive sets also have
bounded gaps.
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Sufficient conditions for a set to be predictive:

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

Necessary conditions for a set to be predictive:

Theorem (Chandgotia, Weiss)

Predictive sets are SIP?.

The following question arises naturally.

Question

Are sufficient conditions necessary and necessary conditions
sufficient?

Let us give some partial answers.
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Are all SIP? sets predictive?

If ε > 0 and α ∈ R/Z then

{n ∈N : nα ∈ (−ε, ε)}

is predictive.

Question

Is the intersection of two predictive sets also predictive? Is the
intersection non-empty?

Question

Let α ∈ R/Z be irrational and ε < 1/2. Is the set

{n ∈N : nα ∈ (0, ε)}

predictive?
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An uncertain theorem

Question

Let α ∈ R/Z be irrational and ε < 1/2. Is the set

{n ∈N : nα ∈ (0, ε)}

predictive?

If the answer is yes then we have two predictive sets

{n ∈N : nα ∈ (0, ε)} and {n ∈N : − nα ∈ (0, ε)}
which do not intersect.

Theorem (Akin and Glasner, 2016)

The set {n ∈N : nα ∈ (0, ε)} is SIP?.

Thus if the answer is no then we have a SIP? set which is not
predictive.
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So we don’t really know if all SIP? sets are predictive.
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There are predictive sets which do not contain return-time
sets.

Consider the set
Q = {n2 : n ∈N}.

For all i , k ∈N we have that if

n2 = −i + 3i2k = i(−1 + 3ik)

then since i and −1 + 3ik are prime to each other, they are perfect
squares themselves.

But this is impossible because −1 + 3ik ≡ −1 (mod 3). Thus
N \Q contains −i + 3i2k ; k ∈N.
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There are predictive sets which do not contain return-time
sets.

Hence we have that

H(X−i | XN\Q) = 0

for all i ∈N.

But then for all i ∈ Z

H(Xi | XN\Q) = H(Xi | X(−N)∪(N\Q)) = 0.

But all return-time sets must intersect the set {n2 : n ∈N}
(Sarkozy, Furstenberg). Thus there are predictive sets which are
not return-time sets.

71 / 126



There are predictive sets which do not contain return-time
sets.

Hence we have that

H(X−i | XN\Q) = 0

for all i ∈N.

But then for all i ∈ Z

H(Xi | XN\Q) = H(Xi | X(−N)∪(N\Q)) = 0.

But all return-time sets must intersect the set {n2 : n ∈N}
(Sarkozy, Furstenberg). Thus there are predictive sets which are
not return-time sets.

72 / 126



There are predictive sets which do not contain return-time
sets.

Hence we have that

H(X−i | XN\Q) = 0

for all i ∈N.

But then for all i ∈ Z

H(Xi | XN\Q) = H(Xi | X(−N)∪(N\Q)) = 0.

But all return-time sets must intersect the set {n2 : n ∈N}
(Sarkozy, Furstenberg). Thus there are predictive sets which are
not return-time sets.

73 / 126



Predictive sets

Question

Let {nk}k∈N be an increasing sequence such that nk+1 − nk is
also an increasing sequence. Prove that

H(X0 | XN\{nk | k∈N}) = 0.

We do not know this even in the case nk = k3. The only partial
progress we have made towards this question uses the Fermat’s
last theorem.
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Proofs.
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Return-time sets are predictive

Given a process YZ with U in its state space, we write

N(U, U) := {n ∈N : Prob(Y0 = Yn = U) > 0}.

By the ergodic theorem, any instance of the process visits U with a
positive density.

Thus return-time sets contain the difference set of a positive
density set.

It is sufficient to prove that the difference set of a positive density
set is predictive.
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Return-time sets are predictive

Let Q = {q1 < q2 < q3 < . . .} have density

α = lim
n→∞

n

qn
> 0

and h(XZ) = 0.

Then

1

n
H(Xq1 , Xq2 , . . . , Xqn) ≤

qn

n

1

qn
H(X1, X2, . . . , Xqn)→

1

α
h(XZ) = 0.

But
1

n
H(Xq1 , Xq2 , . . . , Xqn) =

1

n
H(X0 | Xq2−q1 , Xq3−q1 , . . . , Xqn−q1)

+
1

n
H(X0 | Xq3−q2 , Xq4−q2 , . . . , Xqn−q2) + . . .

+
1

n
H(X0 | Xqn−qn−1)

≥ H(X0 | X(Q−Q)∩N)
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Return-time sets are predictive

Thus if Q has positive density then

H(X0 | X(Q−Q)∩N) = 0

and (Q −Q) ∩N is a predictive set. We showed earlier that every
return-time set contains such a set.

Thus return-time sets are predictive.
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Predictive sets are SIP?

In course of the proof we show that for all SIP(S) there exists a
weak mixing zero entropy Gaussian process XZ such that

X0 is independent of Xi for i ∈N \ SIP(S).

This shows that N \ SIP(S) is not predictive.

Thus there exists a weak-mixing process in which X0 can be
predicted by XN but is independent of X2N+1.
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Predictive sets are SIP?: Processes and Spectral measures

From here on we will assume that X0 is complex-valued, has zero
mean and finite variance.

Let µ be its spectral measure, that is, µ is a finite positive measure
on R/Z such that the Fourier coefficients

µ̂(n) = E(X0Xn).

On the other hand, given any finite positive measure µ on R/Z

there exists a Gaussian process XZ such that

µ̂(n) = E(X0Xn).
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Predictive sets are SIP?: Processes and Spectral measures

XZ

−→ E(X0Xn); n ∈N −→ µ on R/Z such that µ̂(n) = E(X0Xn).

µ on R/Z −→ Gaussian process XZ for which µ̂(n) = E(X0Xn).

If µ is singular then XZ has zero entropy (Newton and Parry).

For Gaussian processes X0 and Xn are independent if and only if
µ̂(n) = 0.

A Gaussian process XZ is weak-mixing if and only if µ is
continuous.
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Predictive sets are SIP?: Gaussian Processes

µ is singular then XZ has zero entropy.

For Gaussian processes X0 and Xn are independent if and only if
µ̂(n) = 0.

A Gaussian process XZ is weak-mixing if and only if µ is
continuous.
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Predictive sets are SIP?: Riesz products

Fix a sequence s1, s2, . . . ⊂N such that si+1 > 3si .

The Riesz product is the function fr : R/Z→ C given by

fr (x) := ∏
k≤r

(1 + cos(2πskx))

= ∏
k≤r

(
1 +

exp(2πiskx) + exp(−2πiskx)

2

)
.

As r tends to infinity the limit of frµLeb is a singular continuous
measure µ such that µ̂(n) = 0 for all

n /∈ SIP(s1, s2, . . .) :=

{
∑
t∈N

εi si : εi ∈ {−1, 0, 1}
}

.

Thus XZ has zero entropy, is weak mixing and E(X0Xn) = 0 for all

n /∈ SIP(s1, s2, . . .).
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Predictive sets are SIP?

Thus XZ has zero entropy, is weak mixing and E(X0Xn) = 0 for all

n /∈ SIP(s1, s2, . . .).

If P is predictive then

P ∩ SIP(s1, s2, . . .) 6= ∅.

One can use this to prove that predictive sets are SIP∗.
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Totally Predictive sets

A set P is a totally predictive set if it can predict everything, that
is, for all zero entropy processes XZ and n ∈N,

H(X−n | XP) = 0.
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Riesz Sets

A set P is a totally predictive set if it can predict everything, that
is, for all zero entropy processes XZ and n ∈N,

H(X−n | XP) = 0.

We can prove the following using all of this machinery.

Theorem (Chandgotia, Weiss)

Let P be a totally predictive set and µ be any (complex-valued
finite measure) on R/Z such that the support of µ̂ is on Z \ P.
Then µ must have an absolutely continuous component.

This is very close to Riesz sets as defined by Yves Meyer in 1968:
A set Q ⊂ Z is called a Riesz set if all measures on R/Z whose
Fourier coefficients are supported on Q are absolutely continuous.
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Riesz Sets

A set P ⊂N is called totally predictive if P + i is predictive for all
i ∈N.

Theorem (Chandgotia, Weiss)

If P ⊂N is a totally predictive set which is open in the Bohr
topology, then Z \ P is a Riesz set.

Question

If P ⊂N is totally predictive then is Z \ P a Riesz set? If Q ⊂N

is a set such that Q ∪ (−N) is Riesz then is N \Q a totally
predictive set?
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A titillating question

Let nN be an increasing sequence of natural numbers such that
ni+1 − ni is also an increasing sequence. We had asked whether
N \ nN is totally predictive.

It is unknown even for ni = i3 whether (−N) ∪ nN is a Riesz set.
Wallen (1970) proved that if µ is a measure whose Fourier
coefficients are supported on (−N) ∪ nN then µ ? µ is absolutely
continuous.

Following an idea by Lindenstrauss, a simple application of
Fermat’s last theorem and Cauchy Schwarz gives us the following
partial result.
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Theorem (Chandgotia, Weiss)

If µ is a probability measure whose Fourier coefficients are
supported on {±iK : i ∈N} ∪ {0} for some k ≥ 2 then µ is not
singular.
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k ≥ 3 is odd and Q = {nk : n ∈ Z}

Theorem (Chandgotia, Weiss, 2020)

If µ is a probability measure such that Support(µ̂) ⊂ Q then µ is absolutely
continuous.

Proof.

Let Q+ := {nk : n ∈N}. Let c be a trigonometric polynomial c(z) := ∑j∈Q+ ajz
j . It

follows from the Cauchy-Schwarz inequality that

| ∑
j∈Q+

aj µ̂(j)|2 = | < 1, c > |2 ≤ |1|2L2(µ)|c |
2
L2(µ) = ∑

j ,j ′∈Q+

ajaj ′ µ̂(j
′ − j).

By Fermat’s last theorem Q+ +Q+ is disjoint from Q+, the right hand side is equal
to ∑j∈Q+ |aj |2. Let Qn := Q ∩ [1, n]. Applying the inequality thus obtained to the

polynomial c(z) := ∑j∈Qn
µ̂(j)z j we get that

∑
j∈Qn

|µ̂(j)|2 ≤ 1

for all n ∈N. This proves that µ is absolutely continuous.
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Summary

Return-time sets are predictive.

The converse is not true.

Predictive sets are SIP?.

Predictive sets have bounded gaps.
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Some questions

1 Suppose a set P is predictive. Can P predict any thing in the
future? In other words, is there i ∈ −N such that
H(Xi | XP) = 0 for all zero entropy processes XZ?

2 Is the intersection of two predictive sets also a predictive set?

3 Are all SIP? sets predictive?

4 Is {n : nα ∈ (0, ε)} a predictive set for irrational α?

5 Let {nk}k∈N be an increasing sequence such that nk+1 − nk

is also an increasing sequence. Prove that for all zero entropy
processes XZ,

H(X0 | XN\{nk | k∈N}) = 0.

6 What is the relationship between Riesz sets and totally
predictive sets?
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