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Topological Markov fields

Markov random fields and Gibbs measures with nearest
neighbour interactions

The pivot property

Examples: 3-coloured chessboard and the Square Island shift.



Topological Markov Fields

A topological Markov field is a shift space X ⇢ AZd

with the
‘conditional independence’ property: for all finite subsets F ⇢ Zd ,
x , y 2 X satisfying x = y on ∂F , z 2 AZd

given by

z =

(
x on F

y on F c

is also an element of X .

Every nearest neighbour shift of finite type is a topological Markov
field.
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agree on ∂F , they must agree on F . Therefore Y is a topological
Markov field. There are uncountably many such shift spaces but
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The measure-theoretic version of this ‘conditional independence’ is
called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure
µ on AZd

with the property that for all finite A,B ⇢ Zd such that
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Given a shift space X define a nearest neighbour interaction on X
as a shift-invariant function V : B(X ) �! R supported on
configurations on edges and vertices.

A Gibbs state with a nearest neighbor interaction V is a Markov
random field µ such that for all x 2 supp(µ) and A,B ⇢ Zd finite
satisfying ∂A ⇢ B ⇢ Ac

µ([x ]
A

��� [x ]
B

) =
’

C⇢A[∂A
eV ([x ]

C

)

Z
A,x |∂A

where Z
A,x |∂A is the uniquely determined normalising factor so that

µ(X ) = 1, dependent upon A and x |∂A.

The specification of a Gibbs measure with a nearest neighbour
interaction has a finite description: all we need is the interaction V .
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Question: When is a Markov random field Gibbs with some
nearest neighbour interaction?

(Hammersley-Cli↵ord theorem) Every Markov random field whose
support has a safe symbol is Gibbs with some nearest neighbour
interaction.

This is a property of the specification rather than the actual
measure!

Question: How can we weaken the hypothesis?
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Pivot Property

A shift space X is said to satisfy the pivot property if for all
x , y 2 X which di↵er only on finitely many sites there exists a
chain x = x1, x2, x3, . . . , xn = y 2 X such that x i , x i+1 di↵er on
at most a single site.

A shift space X is said to satisfy the
generalised pivot property if there exists K > 0 such that for all
x , y 2 X which di↵er only on finitely many sites there exists a
chain x = x1, x2, x3, . . . , xn = y 2 X such that x i , x i+1 di↵er only
on a region of diameter at most K .

Examples:

Any shift space with a safe symbol.

r-coloured checkerboard for r 6= 4, 5.

Domino tilings.
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Suppose µ is a Markov random field whose support has the pivot
property.

Then given x , y 2 supp(µ) that di↵er exactly on F there
exists a chain x = x1, x2, . . . , xn = y where x i , x i+1 di↵er exactly
at a site m

i

2 Z2 and consequently
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Therefore the entire specification is determined by finitely many

parameters viz.
µ([x ]

0[∂0)
µ([y ]

0[∂0)
for configurations x , y which di↵er only at

0, the origin.

Thus the space of specifications on any topological Markov field
with the pivot property can be parametrised by finitely many
parameters.
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Question: Suppose we are given a nearest neighbour shift of
finite type with the pivot property. Is there an algorithm to
determine the number of parameters which describes the
specification?
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Therefore the Hammersley-Cli↵ord type conclusion fails for
specifications of the 3-coloured chessboard

but every fully
supported Markov random field corresponds to the parameters
satisfying v
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Thus the Hammersley-Cli↵ord type conclusion holds for fully
supported measures.

What if the pivot property does not hold? Every 1 dimensional
nearest neighbour shift of finite type has the generalised pivot
property.
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Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin.

The
allowed nearest neighbour configurations are all the nearest
neighbour configurations in

.

There are two kinds of squares: ones with red dots and ones
without red dots which float in a sea of blanks.
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The Square Island shift does not have the generalised pivot
property.

There is no way to switch from a big square with red dots to a big
square without red dots making single site changes( or even bigger
regional changes).

There exists a Markov random field supported on the shift space
which is not Gibbs for any finite-range interaction.

Question: Can more uniform mixing conditions help?
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Thank You!

.


