Markov Random Fields and the 3-coloured Chessboard

Nishant Chandgotia¹ Tom Meyerovitch²

¹University of British Columbia

²Ben-Gurion University

August 2013

Outline

- Topological Markov fields
- Markov random fields and Gibbs measures with nearest neighbour interactions
- The pivot property
- Examples: 3-coloured chessboard and the Square Island shift.

A topological Markov field is a shift space $X \subset \mathcal{A}^{\mathbb{Z}^d}$ with the 'conditional independence' property: for all finite subsets $F \subset \mathbb{Z}^d$, $x, y \in X$ satisfying x = y on ∂F , $z \in \mathcal{A}^{\mathbb{Z}^d}$ given by $\int x \, \mathrm{d} x \, \mathrm{d} x$

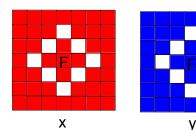
$$z = \begin{cases} x \text{ on } F \\ y \text{ on } F^c \end{cases}$$

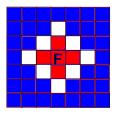
is also an element of X.

A topological Markov field is a shift space $X \subset \mathcal{A}^{\mathbb{Z}^d}$ with the 'conditional independence' property: for all finite subsets $F \subset \mathbb{Z}^d$, $x, y \in X$ satisfying x = y on ∂F , $z \in \mathcal{A}^{\mathbb{Z}^d}$ given by

$$z = \begin{cases} x \text{ on } F \\ y \text{ on } F^c \end{cases}$$

is also an element of X.





Z

Every nearest neighbour shift of finite type is a topological Markov field.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F , they must agree on F.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F , they must agree on F. Therefore Y is a topological Markov field.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F , they must agree on F. Therefore Y is a topological Markov field. There are uncountably many such shift spaces but there are only countably many nearest neighbour shift of finite type!!!

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The support of every Markov random field is a topological Markov field.

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathbb{Z}^d$ finite and $b \in \mathcal{A}^{\partial A}$ is called specification for the measure μ .

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathbb{Z}^d$ finite and $b \in \mathcal{A}^{\partial A}$ is called specification for the measure μ . The specification might contain a huge lot of data!!!!

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

The specification of a Gibbs measure with a nearest neighbour interaction has a finite description: all we need is

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

The specification of a Gibbs measure with a nearest neighbour interaction has a finite description: all we need is the interaction V.

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

This is a property of the specification rather than the actual measure!

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

This is a property of the specification rather than the actual measure!

Question: How can we weaken the hypothesis?

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

• Any shift space with a safe symbol.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \neq 4, 5$.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \neq 4, 5$.
- Domino tilings.

The 3-coloured chessboard is a shift space with alphabet $\{0, 1, 2\}$ such that adjacent colours are distinct.

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	2	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0		0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0		0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1		1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1		1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1		1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1		1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1		1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1		1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1		1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1		1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2		2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2		2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

Suppose μ is a Markov random field whose support has the pivot property.

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})} \\ = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

Therefore the entire specification is determined by finitely many parameters viz.

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})} \\ = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})} \\ = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

Thus the space of specifications on any topological Markov field with the pivot property can be parametrised by finitely many parameters. **Question:** Suppose we are given a nearest neighbour shift of finite type with the pivot property. Is there an algorithm to determine the number of parameters which describes the specification?

A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$,

A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and

$$\mathbf{v}_{3} = \frac{\mu(\left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix})}{\mu(\left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix})}.$$

A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then

$$v_{1} = exp(V(01) + V(10) + V(\frac{0}{1}) + V(\frac{0}{1}))$$

$$-V(21) - V(12) - V(\frac{1}{2}) - V(\frac{1}{2})),$$

$$v_{2} = exp(V(12) + V(21) + V(\frac{1}{2}) + V(\frac{1}{2}))$$

$$-V(02) - V(20) - V(\frac{0}{2}) - V(\frac{0}{2})),$$

$$v_{3} = exp(V(02) + V(20) + V(\frac{0}{2}) + V(\frac{0}{2}))$$

$$-V(01) - V(10) - V(\frac{0}{1}) - V(\frac{1}{0})).$$

 μ is Gibbs if and only if $v_1v_2v_3 = 1$.

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold?

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.

Square Island Shift

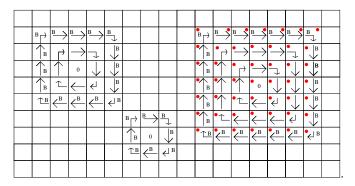
Inspiration from checkerboard island shift by Quas and Şahin.

Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin. The allowed nearest neighbour configurations are all the nearest neighbour configurations in

Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin. The allowed nearest neighbour configurations are all the nearest neighbour configurations in



There are two kinds of squares: ones with red dots and ones without red dots which float in a sea of blanks.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes(or even bigger regional changes).

There is no way to switch from a big square with red dots to a big square without red dots making single site changes(or even bigger regional changes).

There exists a Markov random field supported on the shift space which is not Gibbs for any finite-range interaction.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes(or even bigger regional changes).

There exists a Markov random field supported on the shift space which is not Gibbs for any finite-range interaction.

Question: Can more uniform mixing conditions help?

Thank You!

•