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Some Notation and Setting

Consider a countable locally-finite undirected graph G = (VG , EG)
and A, a finite set.

Suppose X ⊂ AVG is a closed set. For a finite
set A ⊂ VG and a pattern a : A −→ A, [a]A denotes a cylinder set
in X and is given by

[a]A = {x ∈ X | x |A = a}.
The boundary of a set A is denoted by ∂A and is given by

∂A = {v ∈ Ac | v ∼ w ∈ A}.
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Homomorphism Spaces

For simplification, we will often refer to homomorphism spaces.

Consider a finite undirected graph H = (VH, EH) and fix a
bipartite graph G. Let X = Hom(G,H) represent the space of all
graph homomorphisms from G to H.
Examples:(Hard Square model)

G,H )Hom(

00 0 0 0

000

0 0 0

0000

1 0 0 0 0

1 1

0 1

1

0 1

Graph H
An element of 
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Consider a finite undirected graph H = (VH, EH) and fix a
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Safe Symbol

The space Hom(G,H) is said to have a safe symbol ? if there
exists a vertex ? ∈ VH such that for all vertices v ∈ VH the vertex
v ∼ ?.
For instance, 0 is a safe symbol for the hard square model
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Safe Symbol

The space Hom(G,H) is said to have a safe symbol ? if there
exists a vertex ? ∈ VH such that for all vertices v ∈ VH the vertex
v ∼ ?.
For instance, 0 is a safe symbol for the hard square model but the
space of 3-colourings of a graph does not have any safe symbol.



Markov Random Fields

A Markov random field is a probability measure µ on AVG

with the
property that for all finite A, B ⊂ VG such that ∂A ⊂ B ⊂ Ac and
a ∈ AA, b ∈ AB satisfying µ([b]B) > 0

µ([a]A

∣∣∣ [b]B) = µ([a]A

∣∣∣ [b]∂A).
−Elements of A

−Elements of B

−Elements of the

boundary of A

The set of conditional measures µ([·]A
∣∣∣ [b]∂A) for all A ⊂ VG

finite and b ∈ A∂A is called specification for the measure µ. It
might not have any finite parametrisation.
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Gibbs Measures
Given X ⊂ AVG

we define a nearest neighbour interaction on X as
a function V : {[a]A | A ⊂ VG finite} −→ R which is supported on
the cylinder sets of the edges and the vertices of G.

A Gibbs state with a nearest neighbor interaction V is a Markov
random field µ such that for all x ∈ supp(µ) and A, B ⊂ VG finite
satisfying ∂A ⊂ B ⊂ Ac

µ([x ]A

∣∣∣ [x ]B) =

∏
C⊂A∪∂A

eV ([x ]C )

ZA,x |∂A

where ZA,x |∂A is the uniquely determined normalising factor
dependent upon A and x |∂A.

If G = Zd the specification of a shift-invariant Gibbs measure with
a nearest neighbour interaction has a finite description: all we need
is the interaction V .
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Gibbs Measures

Example: If the interaction on the hard square model is given by

0 0

Graph H

Interaction V

0 1

0 1

that is, V ([00]) = V ([10]) = V ([01]) = V ([0]) = 0 and
V ([1]) = 1 then

µ([x ]A

∣∣∣ [x ]B) = ∏
C⊂A∪∂A

eV ([x ]C )

ZA,x |∂A
=

enumber of 1′s in x |A∪∂A

ZA,x |∂A
.
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Question: Under what conditions on the support is a Markov
random field Gibbs with some nearest neighbour interaction?



Previous Results

Positive results:(Instances where every Markov random field is
Gibbs)

The support has a safe symbol: Hammersley and Clifford(’71)

Algebraic conditions on the support: Sturmfels, Gieger and
Meek(’06)

Decomposable graphs: Lauritzen(’96)

For shift-invariant measures and G = Z under some mixing
conditions on the support: Georgii(’88)

For shift-invariant measures and G = Z: Chandgotia, Han,
Marcus, Meyerovitch and Pavlov(’11)

For shift-invariant measures and support Hom(Zd ,H) where
H is an n cycle(n 6= 4): Chandgotia and Meyerovitch(’13)
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Previous Results

Counterexamples:(Markov random fields which are not Gibbs)

When G is a finite graph: Moussouris(’74)

When G = Z and the measure is not shift-invariant:
Dobruschin(’68)

When the alphabet is countable: Georgii(’88)

A shift-invariant measure when G = Z2: Chandgotia and
Meyerovitch(’13)

Remark:
The measure we obtained was not Gibbs for any finite range
interaction.
The support of the measure cannot be represented as Hom(Z2,H)
for any graph H.
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Consequences of having a Safe Symbol

Suppose Hom(G,H) is the hard square model.

0 1

Then for any pair x , y ∈ Hom(G,H) which differ at finitely many
sites, there is a chain x1 = x , x2, . . . , xn = y ∈ Hom(G,H) such
that x i , x i+1 differ only at a single site.

x y
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The Pivot Property

A space Hom(G,H) is said to satisfy the pivot property

if for all
x , y ∈ Hom(G,H) which differ only on finitely many sites there
exists a chain of homomorphisms

x = x1, x2, x3, . . . , xn = y ∈ Hom(G,H)

such that x i , x i+1 differ on at most a single site.

Examples:

If Hom(G,H) has a safe symbol.

If G = Zd and H is an n-cycle (n=3 corresponds to
3-colourings).

If H is dismantleable (to be defined in the next few slides).
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The Pivot Property

Let G = Z2 and suppose µ is a shift-invariant Markov random
field whose support has the pivot property.

Then given
x , y ∈ supp(µ) that differ exactly on a finite set F there exists a
chain x = x1, x2, . . . , xn = y ∈ supp(µ) where x i , x i+1 differ
exactly at a site mi ∈ Z2 and consequently

µ([x ]F | [x ]∂F )
µ([y ]F | [x ]∂F )

=
n−1
∏
i=1

µ([x i ]F | [x i ]∂F )

µ([x i+1]F | [x i ]∂F )

=
n−1
∏
i=1

µ([x i ]mi | [x i ]∂mi
)

µ([x i+1]mi | [x i ]∂mi
)

.

Since µ is shift-invariant therefore the entire specification is

determined by finitely many parameters viz.
µ([x ]0∪∂0)
µ([y ]0∪∂0)

for

configurations x , y which differ only at 0, the origin.
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The Pivot Property

Then ratios of the form
µ([x ]0∪∂0)
µ([y ]0∪∂0)

where x and y differ exactly on

the origin determine whether µ is Gibbs or not.
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3-colourings of Z2

Let H be a 3-cycle with vertices 0, 1 and 2.

Then Hom(Z2,H) is
the space of 3-colourings of Z2 where the colours are given by 0, 1
and 2. If pairs [x ]0∪∂0, [y ]0∪∂0 differ exactly at the origin then x |∂0
and y |∂0 are monochromatic.

Thus a specification supported on the 3-coloured chessboard is

determined the quantities v1 =
µ(

[
1

1 0 1
1

]
)

µ(

[
1

1 2 1
1

]
)
, v2 =

µ(

[
2

2 1 2
2

]
)

µ(

[
2

2 0 2
2

]
)

and

v3 =
µ(

[
0

0 2 0
0

]
)

µ(

[
0

0 1 0
0

]
)
. If µ is a Gibbs measure with some nearest

neighbour interaction V then
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v1 = exp(V (01) + V (10) + V ( 01 ) + V ( 01 ) + V (0)

−V (21)− V (12)− V ( 21 )− V ( 12 )− V (2)),

v2 = exp(V (12) + V (21) + V ( 21 ) + V ( 12 ) + V (1)

−V (02)− V (20)− V ( 02 )− V ( 20 )− V (0)),

v3 = exp(V (02) + V (20) + V ( 20 ) + V ( 02 ) + V (2)

−V (01)− V (10)− V ( 01 )− V ( 10 )− V (1)).

µ is Gibbs if and only if v1v2v3 = 1. Thus we need more than just
the pivot property to prove that it is Gibbs. Note that this is only
on the level of the specifications, not the measures themselves and
under the assumption of shift-invariance.
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Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H.

Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H,

that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w).

H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).

Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:

Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH

and thus any vertex v
can be folded into ?.



Graph Folding(Nowakowski and Winkler-’83)

Consider an undirected finite graph H. Let N(w) denote the
neighbourhood of w in H, that is,

N(w) = {v ∈ H | v ∼ w}.

We will say that H can be folded to a graph H \ {v} if there
exists a vertex w ∈ H such that N(v) ⊂ N(w). H is called
dismantleable if H can be folded all the way to a single vertex(with
or without a loop).
Examples:
Any graph H such that Hom(G,H) has a safe symbol ?.

For any vertex v ∈ VH, N(v) ⊂ N(?) = VH and thus any vertex v
can be folded into ?.



Dismantleable Graphs

The following graph H is dismantleable:

1

4 3

2

by the folding sequence: 3 folds into 1, 2 folds into 1 and finally 4
folds into 1. Note, Hom(G,H) does not have a safe symbol. The
following graph is not dismantleable:

No vertex can be folded into the other. Such a graph is said to be
stiff.
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Hammersley-Clifford Spaces

A space Hom(G,H) is called a Hammersley-Clifford space

if all
Markov specifications on Hom(G,H) are Gibbs for some nearest
neighbour interaction.

Remark : If Hom(G,H) is a Hammersley-Clifford space then for
all Markov random fields µ such that supp(µ) = Hom(G,H), µ is
a Gibbs measure with some nearest neighbour interaction. The
converse need not be true.

Examples:

1 Hom(G,H) such that it has a safe symbol,

2 Hom(G,H) for H being a single vertex or an edge.

3 Hom(Zd ,H) where H is a n-cycle with n 6= 4.
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Graph Folding and Hammersley-Clifford Spaces

Theorem (Chandgotia-’14; In preperation)

Let G be bipartite graph

and H be a graph with a fold H \ {v}.
Then the space Hom(G,H) is a Hammersley-Clifford space if and
only if Hom(G,H \ {v}) is a Hammersley-Clifford space as well.

Remark:

There is a corresponding version of the theorem where the
specifications and interactions are assumed to be invariant
under some automorphism of the graph G e.g. translations in
the case of Zd .

This result is true for a more general notion of folding on
closed spaces of configurations, not just restricted to
homomorphism spaces.
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An idea of the proof:

For simplicity we will assume that

G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v .

Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w .

What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w),

given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v ,

we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0

and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s

such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

w

b

a c

d

v

b

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

For simplicity we will assume that G = Z2 and v � v . Suppose
H \ {v} is a fold of a graph H where vertex v is folded onto
vertex w . What does this imply about the spaces Hom(Z2,H)?

Since N(v) ⊂ N(w), given an element x ∈ Hom(Z2,H) such
that x0 = v , we can replace the v by w at 0 and still be an
element of Hom(Z2,H).

a c

d

v

b

a c

d

v

b

a c

d

w

bw

w

w

w

w

w

w

w

Also we can surround x |0∪∂0 by w ’s such that the partial
configuration thus obtained is still valid in Hom(Z2,H).



An idea of the proof:

Suppose Hom(Z2,H \ {v}) is a Hammersley-Clifford space.

Let µ
be a Markov random field on Hom(Z2,H). To prove that it is
Gibbs we need to build a correspondence between cylinder sets on
edges and vertices of Z2 and pairs of elements of Hom(Z2,H)
which differ at a single site.

Since Hom(Z2,H \ {v}) is a Hammersley-Clifford space we only
care about pairs which involve changing a single v to w .
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An idea of the proof:

Assume v � v and choose some a ∼ v .

For all x ∼ v make the
following identifications

V ([xv ]) with
w

w x v
w
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w

w a v
w

V ([vx ]) with
w

v x w
w

,
w

v a w
w

V ([ vx ]) with
v

w x w
w

,
v

w a w
w

V ([ xv ]) with
w

w x w
v

,
w

w a w
v

V ([v ]) with
a

a v a
a

,
a

a w a
a

We can use the following order to change a single v to w :
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An idea of the proof:

Thus in the case when v � v we can find an interaction which
represents changing a single v to w in any configuration.

Since
Hom(Z2,H \ {v}) is a Hammersley-Clifford space we are done for
this particular case.

If v ∼ v then the argument is slightly more involved.
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Questions:

What happens when G is not bipartite?

Given a graph G what are the graphs H for which Hom(G,H)
is a Hammersley-Clifford space? Equivalently, for what stiff
graphs H(ones which cannot be folded) is the space
Hom(G,H) a Hammersley-Clifford space?

If H is a single vertex with a loop or an edge then Hom(G,H) is a
Hammersley-Clifford space.

Thus if H is dismantleable graph or a 4-cycle, then Hom(G,H) is
a Hammersley-Clifford space.

Are there any more such stiff graphs H in general?
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Thank You!
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