The Pivot Property for $Hom(\mathbb{Z}^d, \mathcal{H})$

Nishant Chandgotia and Brian Marcus

University of British Columbia

March, 2015

Outline

- Pivot Property
- Dismantlable Graphs
- Complete Graphs
- The 3-coloured Chessboard
- Four-cycle Free Graphs and the Universal Cover
- Generalised Pivot Property
- Single-Site Fillability

 \bullet $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a countable, undirected locally-finite graph.

- \bullet $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a countable, undirected locally-finite graph.
- ullet ${\cal V}$ will be called the set of sites.

- \bullet $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a countable, undirected locally-finite graph.
- ullet ${\cal V}$ will be called the set of sites.
- $\, \bullet \, \, \mathfrak{A} \,$ is a set of symbols.

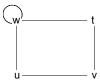
- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a countable, undirected locally-finite graph.
- \bullet $\mathcal V$ will be called the set of sites.
- A is a set of symbols.
- $x, y \in X \subset \mathfrak{A}^{\mathcal{V}}$ is called a pivot if they differ at a single site.

- ullet $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a countable, undirected locally-finite graph.
- ullet ${\cal V}$ will be called the set of sites.
- A is a set of symbols.
- $x, y \in X \subset \mathfrak{A}^{\mathcal{V}}$ is called a pivot if they differ at a single site.
- $X \subset \mathfrak{A}^{\mathcal{V}}$ has the pivot property if for all $x, y \in X$ which differ at finitely many sites there exists a sequence of pivots starting from x and ending at y.

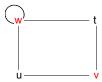
Question:

Let $\mathcal H$ be a finite undirected graph. When does $X=Hom(\mathbb Z^d,\mathcal H)$ have the pivot property?

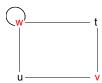
• $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .



- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.



- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.
- Then any appearance of v in $x \in Hom(\mathcal{G}, \mathcal{H})$ can be replaced by w.



- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.
- Then any appearance of v in $x \in Hom(\mathcal{G}, \mathcal{H})$ can be replaced by w.
- We say that \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$.

Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$ then $\mathsf{Hom}(\mathcal{G},\mathcal{H})$ has the pivot property if and only if $\mathsf{Hom}(\mathcal{G},\mathcal{H} \setminus \{v\})$ has the pivot property as well.

Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H}\setminus\{v\}$ then $\mathsf{Hom}(\mathcal{G},\mathcal{H})$ has the pivot property if and only if $\mathsf{Hom}(\mathcal{G},\mathcal{H}\setminus\{v\})$ has the pivot property as well.

• Suppose \mathcal{G} is a finite graph, v folds into w and $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.

Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H}\setminus\{v\}$ then $\mathsf{Hom}(\mathcal{G},\mathcal{H})$ has the pivot property if and only if $\mathsf{Hom}(\mathcal{G},\mathcal{H}\setminus\{v\})$ has the pivot property as well.

- Suppose \mathcal{G} is a finite graph, v folds into w and $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.
- Let $x, y \in Hom(\mathcal{G}, \mathcal{H})$. Then we can replace the v's in x, y by w's one site at a time to obtain $x', y' \in Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$.

Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H}\setminus\{v\}$ then $\mathsf{Hom}(\mathcal{G},\mathcal{H})$ has the pivot property if and only if $\mathsf{Hom}(\mathcal{G},\mathcal{H}\setminus\{v\})$ has the pivot property as well.

- Suppose \mathcal{G} is a finite graph, v folds into w and $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.
- Let $x, y \in Hom(\mathcal{G}, \mathcal{H})$. Then we can replace the v's in x, y by w's one site at a time to obtain $x', y' \in Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$.
- There is a sequence of pivots from x' to y' since $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.

Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$ then $\mathsf{Hom}(\mathcal{G},\mathcal{H})$ has the pivot property if and only if $\mathsf{Hom}(\mathcal{G},\mathcal{H} \setminus \{v\})$ has the pivot property as well.

- Suppose \mathcal{G} is a finite graph, v folds into w and $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.
- Let $x, y \in Hom(\mathcal{G}, \mathcal{H})$. Then we can replace the v's in x, y by w's one site at a time to obtain $x', y' \in Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$.
- There is a sequence of pivots from x' to y' since $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.
- Thus there is a sequence of pivots from x to y; $Hom(\mathcal{G}, \mathcal{H})$ has the pivot property.

Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$ then $\mathsf{Hom}(\mathcal{G},\mathcal{H})$ has the pivot property if and only if $\mathsf{Hom}(\mathcal{G},\mathcal{H} \setminus \{v\})$ has the pivot property as well.

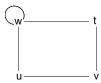
- Suppose \mathcal{G} is a finite graph, v folds into w and $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.
- Let $x, y \in Hom(\mathcal{G}, \mathcal{H})$. Then we can replace the v's in x, y by w's one site at a time to obtain $x', y' \in Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$.
- There is a sequence of pivots from x' to y' since $Hom(\mathcal{G}, \mathcal{H} \setminus \{v\})$ has the pivot property.
- Thus there is a sequence of pivots from x to y; $Hom(\mathcal{G}, \mathcal{H})$ has the pivot property.
- ullet Very similar arguements work for the converse and infinite ${\cal G}.$

• If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.

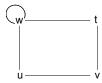
• If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.

J------\

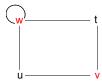
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.



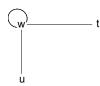
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.



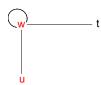
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.



- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.



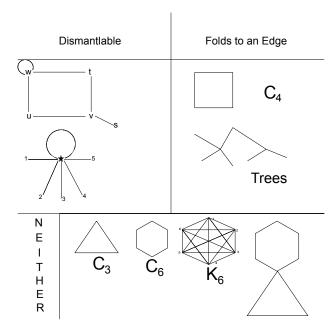
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.



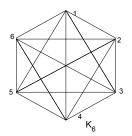
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.

- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.

- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from \mathcal{H} to either \mathcal{H}' mentioned above then $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.
- If \mathcal{H} folds to a single vertex then \mathcal{H} is called dismantlable.

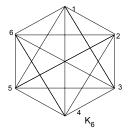


There are graphs \mathcal{H} where no folding is possible but $Hom(\mathbb{Z}^d, \mathcal{H})$ still has the pivot property: Take $\mathcal{H} = K_6$ and $x \in Hom(\mathbb{Z}^2, K_6)$.



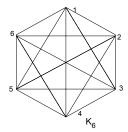
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
3	2	1	6	5	4	3	2
4	3	2	1	6	5	4	3
5	4	3	2	1	6	5	4
6	5	4	3	2	1	6	5
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
х							

• The symbol at every site can be switched to a different admissible symbol.



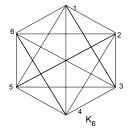
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
x								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



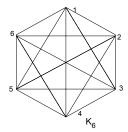
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
3	2	1	6	5	4	3	2
4	3	2	1	6	5	4	3
5	4	3	2	1	6	5	4
6	5	4	3	2	1	6	5
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
Х							

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



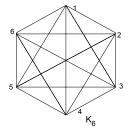
1	4	5	4	3	2	1	6
2	1	6	5	4	3	2	1
3	2	1	6	5	4	3	2
4	3	2	1	6	5	4	3
5	4	3	2	1	6	5	4
6	5	4	3	2	1	6	5
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
Х							

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



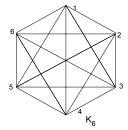
1	4	5	4	3	2	1	6
2	1	6	5	4	3	2	1
3	2	1	6	5	4	3	2
4	3	2	1	6	5	4	3
5	4	3	2	1	6	5	4
6	5	4	3	2	1	6	5
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
Х							

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



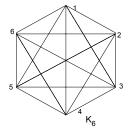
1	4	5	4	3	2	1	6
2	1	2	5	4	3	2	1
3	2	1	6	5	4	3	2
4	3	2	1	6	5	4	3
5	4	3	2	1	6	5	4
6	5	4	3	2	1	6	5
1	6	5	4	3	2	1	6
2	1	6	5	4	3	2	1
×							

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



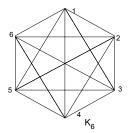
1	4	5	4	3	2	1	6	
2	1	2	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
x								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



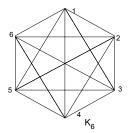
1	4	5	4	3	2	1	2		
2	1	2	5	4	3	2	1		
3	2	1	2	5	4	3	2		
4	3	2	1	2	5	4	3		
5	4	3	2	1	2	5	4		
2	5	4	3	2	1	2	5		
1	2	5	4	3	2	1	2		
2	1	2	5	4	3	2	1		
х									

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



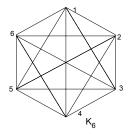
1	4	5	4	3	2	1	2
2	1	2	5	4	3	2	1
3	2	1	2	5	4	3	2
4	3	2	1	2	5	4	3
5	4	3	2	1	2	5	4
2	5	4	3	2	1	2	5
1	2	5	4	3	2	1	2
_	1	2	5	4	3	2	1
2				l		_	

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



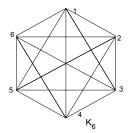
6	4	6	4	6	2	6	2	
2	6	2	6	4	6	2	6	
6	2	6	2	6	4	6	2	
4	6	2	6	2	6	4	6	
6	4	6	2	6	2	6	4	
2	6	4	6	2	6	2	6	
6	2	6	4	6	2	6	2	
2	6	2	6	4	6	2	6	
×								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



6	4	6	4	6	2	6	2	
2	6	2	6	4	6	2	6	
6	2	6	2	6	4	6	2	
4	6	2	6	2	6	4	6	
6	4	6	2	6	2	6	4	
2	6	4	6	2	6	2	6	
6	2	6	4	6	2	6	2	
2	6	2	6	4	6	2	6	
×								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



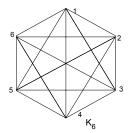
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
×									

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
x									

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.
- We can do this for any configuration $x \in Hom(\mathbb{Z}^2, K_6)$. Thus it has the pivot property.



6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
6	1	6	1	6	1	6	1		
1	6	1	6	1	6	1	6		
x									

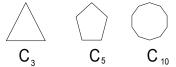
This can be further generalised to prove

Theorem

 $Hom(\mathbb{Z}^d, K_r)$ has the pivot property for all $r \geq 2d + 2$.

n-cycles

• C_n denotes the *n*-cycle with vertices $0, 1, 2, \ldots, n-1$.

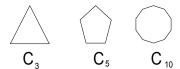


n-cycles

• C_n denotes the *n*-cycle with vertices $0, 1, 2, \ldots, n-1$.

Theorem (Chandgotia, Meyerovitch '13)

 $Hom(\mathbb{Z}^d, C_n)$ has the pivot property for all $n \neq 4$.



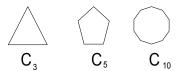
n-cycles

• C_n denotes the *n*-cycle with vertices $0, 1, 2, \ldots, n-1$.

Theorem (Chandgotia, Meyerovitch '13)

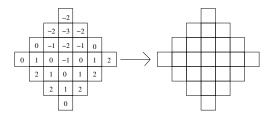
 $Hom(\mathbb{Z}^d, C_n)$ has the pivot property for all $n \neq 4$.

The result was well known for n = 3.

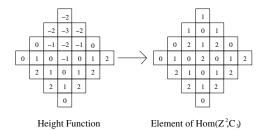


Height Function

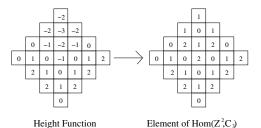
• A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.



- A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.
- If h is a height function then $h \mod 3$ is an element of $Hom(\mathbb{Z}^d, C_3)$.

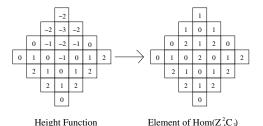


- A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.
- If h is a height function then $h \mod 3$ is an element of $Hom(\mathbb{Z}^d, C_3)$.
- Conversely given an element of $Hom(\mathbb{Z}^d, C_3)$ there is a unique element (up to additive constants) of $Hom(\mathbb{Z}^d, \mathbb{Z})$ corresponding to it.

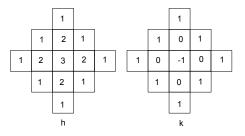


Height Function

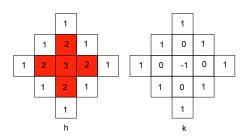
- A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.
- If h is a height function then h mod 3 is an element of $Hom(\mathbb{Z}^d, C_3)$.
- Conversely given an element of $Hom(\mathbb{Z}^d, C_3)$ there is a unique element (up to additive constants) of $Hom(\mathbb{Z}^d, \mathbb{Z})$ corresponding to it.
- It is sufficient to prove the pivot property for $Hom(\mathbb{Z}^d, \mathbb{Z})$.



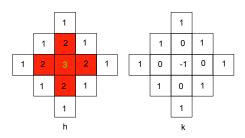
• Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.



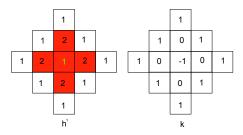
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.



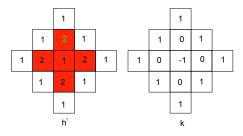
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.



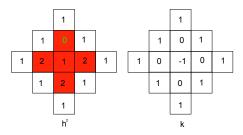
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



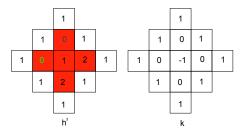
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



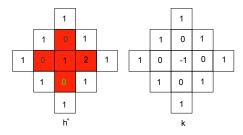
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



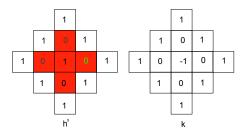
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



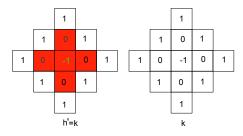
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



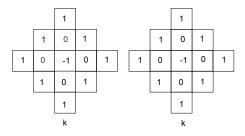
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



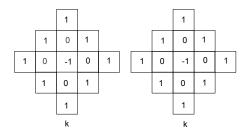
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



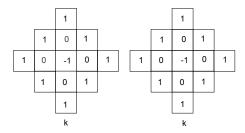
- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.



- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.
- Proceed similarly with $k|_{F \setminus F_0}$.



- Let F be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose F is finite.
- Let $F_0 \subset F$ be the set of sites \vec{i} where $h_{\vec{i}} > k_{\vec{i}}$. Choose a site in $\vec{i}_0 \in F_0$ which achieves the maximum for $h|_{F_0}$.
- Decrease the height of h at \vec{i}_0 . Iterate.
- Proceed similarly with $k|_{F \setminus F_0}$.
- $Hom(\mathbb{Z}^d,\mathbb{Z})$ has the pivot property.

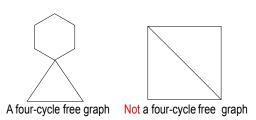


Four-cycle free graphs

If C_4 is not a subgraph of \mathcal{H} and it has no self-loops then \mathcal{H} is called four-cycle free.

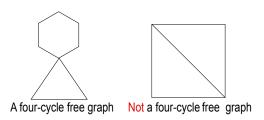
Four-cycle free graphs

If C_4 is not a subgraph of $\mathcal H$ and it has no self-loops then $\mathcal H$ is called four-cycle free.



Four-cycle free graphs

If C_4 is not a subgraph of \mathcal{H} and it has no self-loops then \mathcal{H} is called four-cycle free.



What generalises height functions for four-cycle free graphs?

ullet Let ${\cal H}$ be a graph without self-loops.

- ullet Let ${\cal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.

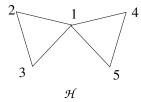
- ullet Let ${\cal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.

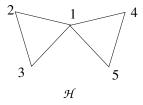
- ullet Let ${\mathcal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.
- Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u.

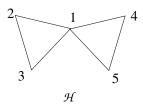
- Let \mathcal{H} be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.
- Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u.
- Two such walks are adjacent if one extends the other by a single step.

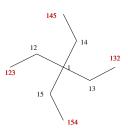
Universal Covers

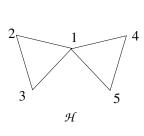
- \bullet Let ${\mathcal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.
- Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u.
- Two such walks are adjacent if one extends the other by a single step.
- The universal cover of C_3 is \mathbb{Z} (segments of the walks $0, 1, 2, 0, 1, 2, \dots$ and $0, 2, 1, 0, 2, 1, \dots$).

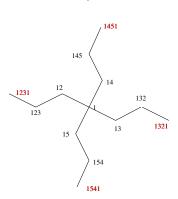




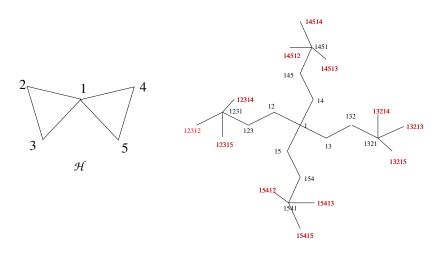








A Part of $E_{\mathcal{H}}$



A Part of $E_{\mathcal{H}}$

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes a non-backtracking walk to its terminal vertex.

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes a non-backtracking walk to its terminal vertex.

When
$$\mathcal{H}=\mathit{C}_3$$
 then π is the map

$$mod 3: \mathbb{Z} \longrightarrow C_3.$$

There is a natural graph homomorphism $\pi: E_{\mathcal{H}} \longrightarrow \mathcal{H}$ which takes a non-backtracking walk to its terminal vertex.

When $\mathcal{H}=\mathcal{C}_3$ then π is the map

$$mod 3: \mathbb{Z} \longrightarrow C_3.$$

When ${\cal H}$ is four-cycle free, the induced map

$$\pi: Hom(\mathbb{Z}^d, E_{\mathcal{H}}) \longrightarrow Hom(\mathbb{Z}^d, \mathcal{H})$$

is surjective.

Four-cycle free graphs

This can be used to prove

Theorem (Chandgotia '14)

If \mathcal{H} is a four-cycle free graph then $\mathsf{Hom}(\mathbb{Z}^d,\mathcal{H})$ has the pivot property.

Are there homomorphism spaces which do not have the pivot property?	

The generalised pivot property

(Marcus, Briceño '14) $Hom(\mathbb{Z}^2, K_5)$ does not have the pivot property.

The generalised pivot property

(Marcus, Briceño '14) $Hom(\mathbb{Z}^2, K_5)$ does not have the pivot property.

```
1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
```

The symbols in the box can be interchanged; but no individual symbol can be changed.

The generalised pivot property

(Marcus, Briceño '14) $Hom(\mathbb{Z}^2, K_5)$ does not have the pivot property.

```
1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
```

The symbols in the box can be interchanged; but no individual symbol can be changed. But it satisfies a more general property:

 $Hom(\mathbb{Z}^d,\mathcal{H})$ has the generalised pivot property if there exists $P\subset\mathbb{Z}^d$ finite such that for all $x,y\in Hom(\mathbb{Z}^d,\mathcal{H})$ which differ at finitely many sites there exists a sequence $x=x^1,x^2,\ldots,x^n=y\in Hom(\mathbb{Z}^d,\mathcal{H})$ such that x^i,x^{i+1} differ only on some translate of P.

• Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

X

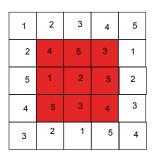
• Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.
- Choose the southwest-most site $\vec{i} \in F$. We want to change $x_{\vec{i}}$ to $y_{\vec{i}}$.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4



X

- Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.
- Choose the southwest-most site $\vec{i} \in F$. We want to change $x_{\vec{i}}$ to $y_{\vec{i}}$.
- Remove $x_{\vec{i}}$, $x_{\vec{i}+\vec{e}_1}$, $x_{\vec{i}+\vec{e}_2}$.

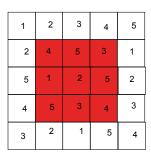
1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

X

- Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.
- Choose the southwest-most site $\vec{i} \in F$. We want to change $x_{\vec{i}}$ to $y_{\vec{i}}$.
- Remove $x_{\vec{i}}, x_{\vec{i}+\vec{e}_1}, x_{\vec{i}+\vec{e}_2}$.

1	2	3	4	5
2	3	1	2	1
5		3	4	2
4			1	3
3	2	1	5	4



X

• Place $y_{\vec{i}}$ at the \vec{i} site.

1	2	3	4	5
2	3	1	2	1
5		3	4	2
4	5		1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.

1	2	3	4	5
2	3	1	2	1
5		3	4	2
4	5		1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

Х

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.

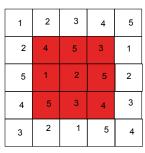
1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	5	2	1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	З	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

 \mathbf{X}^{1}

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

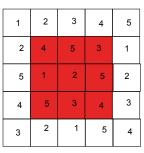
1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	5	2	1	3
3	2	1	5	4



 \mathbf{X}^{1}

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

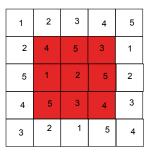
1	2	3	4	5
2	3	1	2	1
5	1	2	4	2
4	5	3	1	3
3	2	1	5	4



(2

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

1	2	3	4	5
2	3	1	2	1
5	1	2	4	2
4	5	3	1	3
3	2	1	5	4



 \mathbf{x}^{1}

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

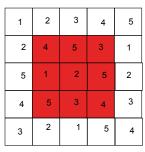
1	2	3	4	5
2	3	1	2	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

1	2	3	4	5
2	4	5	З	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

ر³

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

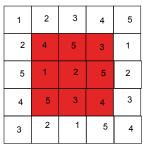
1	2	3	4	5
2	4	5	2	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4



X 4

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4



⁵=y

- Place y_i at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that $Hom(\mathbb{Z}^2, K_5)$ has the generalised pivot property for the shape $P = \{\vec{0}, \vec{e}_1, \vec{e}_2\}$.

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

°=y

/

Single-site Fillability

• $Hom(\mathbb{Z}^d, \mathcal{H})$ is single-site fillable if for $v_1, v_2, \ldots, v_{2d} \in \mathcal{H}$ there exists $v \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v$ for all $1 \leq i \leq 2d$.

Single-site Fillability

• $Hom(\mathbb{Z}^d, \mathcal{H})$ is single-site fillable if for $v_1, v_2, \ldots, v_{2d} \in \mathcal{H}$ there exists $v \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v$ for all $1 \leq i \leq 2d$.

Theorem (Briceño '14)

If $Hom(\mathbb{Z}^d, \mathcal{H})$ is single-site fillable then it has the generalised pivot property.

 $\mathit{Hom}(\mathbb{Z}^d,\mathcal{H})$ has the pivot property if:

 $\mathit{Hom}(\mathbb{Z}^d,\mathcal{H})$ has the pivot property if:

 $m{\cdot}$ \mathcal{H} is dismantlable or there is a sequence of folds from \mathcal{H} to an edge. (Brightwell and Winkler '00)

 $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property if:

- $m{\cdot}$ \mathcal{H} is dismantlable or there is a sequence of folds from \mathcal{H} to an edge. (Brightwell and Winkler '00)
- $\mathcal{H} = K_r$ where K_r is the complete graph on r vertices and $r \geq 2d + 2$. (well-known)

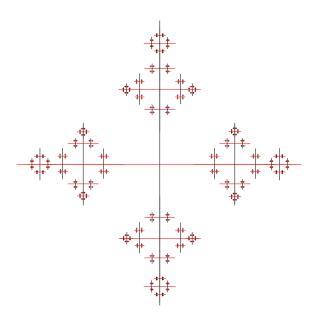
 $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property if:

- $m{\cdot}$ \mathcal{H} is dismantlable or there is a sequence of folds from \mathcal{H} to an edge. (Brightwell and Winkler '00)
- $\mathcal{H} = K_r$ where K_r is the complete graph on r vertices and $r \geq 2d + 2$. (well-known)
- \bullet ${\cal H}$ is four-cycle free. (Chandgotia '14)

 $Hom(\mathbb{Z}^d,\mathcal{H})$ has the pivot property if:

- $m{\cdot}$ \mathcal{H} is dismantlable or there is a sequence of folds from \mathcal{H} to an edge. (Brightwell and Winkler '00)
- $\mathcal{H} = K_r$ where K_r is the complete graph on r vertices and $r \geq 2d + 2$. (well-known)
- \bullet \mathcal{H} is four-cycle free. (Chandgotia '14)
- $Hom(\mathbb{Z}^2, K_4)$, $Hom(\mathbb{Z}^2, K_5)$ do not have the pivot property but have the generalised pivot property (Marcus, Briceño '14).

Question:	When does	$Hom(\mathbb{Z}^d,\mathcal{H})$	have the gener	alised pivot
property?				



Thank You!