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Can you tile the plane?

Suppose we are given infinite copies of some square tiles with
colours on their boundary.

There are some rules on how they can be put together. If the
colours along an edge are the same then we can put them together.
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Can you tile the plane?

If the colours along an edge are the same then we can put them
together.
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Can you tile the plane?

But if the colour along an edge is not the same then you cannot.

8 / 136



Can you tile the plane?

We are given infinite copies of some square tiles with colours on
their boundary.

There are some rules on how they can be put together. If the
colours along an edge are the same then we can put them
together. It the colours don’t match we cannot place them next to
each other.

Question

Can you cover the entire Z2 lattice with these tiles?
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Can you tile the plane?

Of course! You can tile the plane periodically with these.
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Can you tile the plane?

What about these tiles?
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Can you tile the plane?

So if someone gave you a bunch of tiles and asked you if you can
use them to tile the plane with it how would you proceed?

Start trying to put them together in whatever way we can.

If at some point we see that we cannot tile any more then we know
that no such tiling exists.
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Can you tile the plane?

But if in these attempts we see that the top and the bottom edge,
the left and the right edge of some rectangle have the same
colours then we continue periodically

and get a tiling of the plane.
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So if someone gave you a bunch of tiles and asked you if you can
use them to tile the plane with it how would you proceed?

Start trying to put them together in whatever way we can.

If at some point we see that we cannot tile any more then we know
that no such tiling exists.

But if in these attempts we see that the top and the bottom edge,
the left and the right edge of some rectangle have the same
colours then we continue periodically and get a tiling of the plane.

What is the problem with this strategy?
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You may continue indefinitely and you might not encounter
periodicity or non-tileability. This lead Hao Wang to ask the
question:

Question (Wang, 1960)

If there is a way to tile the plane, is there necessarily a way to tile
the plane periodically?

Wang was interested in automated theorem proving where this
question arose automatically.

If the answer is yes, then we have a method (algorithm) to decide
whether a given set of tiles can tile the plane.

If the answer is no, then it is not clear what will happen.

What is the answer?
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Berger’s undecidability theorem

Theorem (Berger, 1966)

There is no algorithm which can decide whether or not a set of
tiles can tile the plane.

In other words the tiling problem is undecidable. How does one prove something like
this?

The germ of this idea goes into what I heard recently in a talk by Avi Widgerson as
the refutation of Hilbert’s dream.

Among many things Hilbert was interested in the question: Is Truth= Provability and
Provability=Computability?

Godel’s incompleteness theorem showed that in any reasonable axiomatic system there
will be statements which are neither true nor false negating the first equality.

Alan Turing’s thesis (1939) showed that there are provable things which can’t be
computed. Specifically he showed that there can be no algorithm to decide whether or
not a given algorithm will halt.
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Berger’s undecidability theorem

Theorem (Berger, 1966)

There is no algorithm which can decide whether or not a set of
tiles can tile the plane.

For every set of tiles it is either true or false whether it can tile the
plane with it.

The theorem tells us that there can’t be any general method which
will work for every set of tiles.
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Berger’s undecidability theorem

Theorem (Berger, 1966)

There is no algorithm which can decide whether or not a set of
tiles can tile the plane.

To start Berger produced a set of tiles which can only tile
aperiodically

and then somehow superimpose symbols of computation (following
the formalism by Turing).

An infinite tiling will exist if and only if ‘the computation will be
endless’.

Since there is no algorithm to decide the latter, there is no
algorithm to decide the former either.
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Robinson’s Undecidability and Nonperiodicity of Tilings of
the Plane- 1971

Berger’s example was complicated. Later Robinson gave an
example which was much simpler.

Figure: Robinson’s tiles
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Figure: Robinson’s tilings
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In 1974, Roger Penrose came upon a set of tiles (no longer
squares) which gave rise to special aperiodic tilings of the plane.

Note that it has some seeming 5-fold symmetry.
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His motivation was particularly curious. He writes in his paper:

However, recently I wanted to design something interesting for
someone in the hospital to look at. . .

This kicked off a huge body of work with many such tile sets being
created.

In 1981 Steinhardt, Nelson and Ronchetti predicted that a
“crystal” with such a structure must exist.

This prediction went against crystallographic restriction theorem
which said that only 3, 4 or 6 fold rotational symmetry can exist in
crystals.
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However. . .
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The Birth of Quasicrystals

In 1982, Daniel Schechtman (with no knowledge of these
theoretical developments) noticed that the diffraction pattern from
certain aluminium-manganese alloys has 10-fold symmetry.

This broke the misconception that orderly arrangement of atoms
must necessarily be periodic and brought a big revolution to the
field of crystallography and material science.
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Linus Pauling -“there are no quasicrystals, just quasi-scientists.”

Dan Shechtman wins the Nobel prize in chemistry in 2011.
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Linus Pauling -“there are no quasicrystals, just quasi-scientists.”

Dan Shechtman wins the Nobel prize in chemistry in 2011.
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Eiji Abe, 2012

An alloy under a electron microscope showing structure very
similar to Penrose tilings.
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Kepler (1619)

Kepler had found such a tiling three centuries ago.
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Girih pattern from the Darb-i-Imam shrine, Iran. 1453 (Lu
and Steinhardt)
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We haven’t seen everything yet,
but when we do

it won’t be for the first time
or the last, either.

You know us.
-J. Vinograd
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Objective

We have three objectives:

1 Suppose we can tile the plane by a given set of tiles, can we
count approximately how many of them are there?

2 What kind of processes can tilings model?

3 What does a random tiling actually look like?
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Let us formalise some of these things.
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Shift of finite type

Let A be a finite set and consider some rules (R) how the symbols
can be placed next to each other on the Zd lattice.

The space of configurations on Zd following the rules (R) form
what are called a shift of finite type.
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Example: Rectangular tiling shift

Suppose we have a bunch of boxes T .

The only restriction is that both the gcd of the lengths and
breadths is 1.

An extremely important subcase is that of domino tilings where all
the sides have length 1 except one edge with length 2.
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Domino Tilings
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Entropy for shifts of finite type

Let A be a finite set and consider some rules (R) how the symbols
can be placed next to each other on the Zd lattice.

We know that there is no algorithm to decide whether or not it is
empty.

Let sn(R) be the number of different patterns on n-box which
follow the rules R.

The entropy of the shift space associated with the rules (R) is
given by

h(R) = lim
n→∞

1

nd
log(sn(R)).
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In 1961, Kastelyn computed the entropy of domino tilings in d = 2
(and later by Burton & Pemantle in 1993) as∫ 1

0

∫ 1

0
log (4− 2 cos(2πα1)− 2 cos(2πα2)) dα1dα2.

It is very rare in this study to have such precise computations.
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Entropy can be approximated from above

Let A be a finite set and consider some rules (R) how the symbols can be placed next
to each other on the Z2 lattice.

Let sn(R) be the number of different patterns on n box which follow the rules R.

The entropy is given by

h(R) = lim
n→∞

1

nd
log(sn(R)).

It turns out that
1

nd
log(sn(R)) ≥ h(R)

for all n.

So even though we cannot say whether the shift space is empty or not, we can always
approximate the entropy from above.
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Right-recursively enumerable numbers

Let A be a finite set and consider some rules (R) how the symbols can be placed next
to each other on the Zd lattice.

The entropy is given by

h(R) = lim
n→∞

1

nd
log(sn(R)).

It can be approximated from above.

A number is called right-recursively enumerable number if there is an algorithm which

can approximate it from above.

Theorem (Hochman-Meyerovitch)

A number β = h(R) for some set of rules R if and only if β is
non-negative and right-recursively enumerable.
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Entropy can be approximated from above

We just saw that the entropy of a shift of finite type can be
approximate from above but not necessarily from below.

In “nice” cases an approximation from below is also possible.

For instance, if we have enough periodic points!!!
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With periodic points we can approximate entropy from
below

Suppose pern(R) is the number of pattern on the n× n box with
some fixed pattern on the top and bottom and on the left and the
right.

84 / 136



Suppose pern(R) is the number of pattern on the n× n box with some fixed pattern
on the top and bottom and on the left and the right.

Then we can divide Z2 into n× n boxes each of which can be filled independently by
an element of pern(R).
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This would show that

h(R) :=
1

n2
log(sn(R)) ≥

1

n2
log(|pern(R)|).

Thus if we have

h(R) = lim sup
n→∞

1

n2
log(|pern(R)|)

then we can approximate it from below as well.

But even in the simplest case this is difficult to prove (or disprove).
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Suppose we have a bunch of boxes T .

The only restriction is that both the gcd of the lengths and
breadths is 1.

Look at all tilings by the boxes T .

Question

Is the entropy of the space of tilings by these boxes computable?

This question is wide open.
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But domino tilings can be handled quite well.
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Theorem (Chandgotia)

The entropy of domino tilings is computable in all dimensions.

In d = 2 this follows from exact computations by Kastelyn(1961).
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Here is a simpler question.

Question

Can a partial tiling by rectangles always be completed to that of a
box?

For d = 2 this is known in the case of two tiles due to Einsedler
(2001).
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Objective

We have three objectives:

1 Suppose we can tile the plane by a given set of tiles, can we
count approximately how many of them are there?

2 What kind of processes can tilings model?

3 What does a random tiling actually look like?
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Modelling of Zd actions

Given probability preserving free action of Zd on a standard Borel
space X , we can ask whether they can be modelled by the space
of tilings.

More technically if X (T ) is the space of tilings for a tile set T , is
there an equivariant Borel embedding from X to X (T ).

There are some natural constraints which come from entropy but
are there more restrictions?

Along with Tom Meyerovitch (2021) we developed very general
results which helped us prove results of this type.

102 / 136



Modelling of Zd actions

Given probability preserving free action of Zd on a standard Borel
space X , we can ask whether they can be modelled by the space
of tilings.

More technically if X (T ) is the space of tilings for a tile set T , is
there an equivariant Borel embedding from X to X (T ).

There are some natural constraints which come from entropy but
are there more restrictions?

Along with Tom Meyerovitch (2021) we developed very general
results which helped us prove results of this type.

103 / 136



Modelling of Zd actions

Given probability preserving free action of Zd on a standard Borel
space X , we can ask whether they can be modelled by the space
of tilings.

More technically if X (T ) is the space of tilings for a tile set T , is
there an equivariant Borel embedding from X to X (T ).

There are some natural constraints which come from entropy but
are there more restrictions?

Along with Tom Meyerovitch (2021) we developed very general
results which helped us prove results of this type.

104 / 136



Modelling of Zd actions

Given probability preserving free action of Zd on a standard Borel
space X , we can ask whether they can be modelled by the space
of tilings.

More technically if X (T ) is the space of tilings for a tile set T , is
there an equivariant Borel embedding from X to X (T ).

There are some natural constraints which come from entropy but
are there more restrictions?

Along with Tom Meyerovitch (2021) we developed very general
results which helped us prove results of this type.

105 / 136



Modelling of Zd actions

Given probability preserving free action of Zd on a standard Borel space X , we can
ask whether they can be modelled by the space of tilings.

More technically if X (T ) is the space of tilings for a tile set T , is there an equivariant
Borel embedding from X to X (T )?

There are some natural constraints which come from entropy but are there more
restrictions?

Along with Tom Meyerovitch (2021) we developed very general results which helped
us prove results of this type.

Let Boxn(T ) denote the number of tilings of a box of size n by tiles in a tile set T .
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Not a box tiling

Let Boxn(T ) denote the number of tilings of a box of size n by
tiles in a tile set T .
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A box tiling

Let Boxn(T ) denote the number of tilings of a box of size n by
tiles in a tile set T .
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Modelling of Zd actions

Given free action of Zd on a standard Borel space X , we can ask whether they can be
modelled by the space of tilings.

More technically if X (T ) is the space of tilings for a tile set T , is there an equivariant
Borel embedding from X to X (T )?

There are some natural constraints which come from entropy but are there more
restrictions?

Along with Tom Meyerovitch (2021) we developed very general results which helped
us prove results of this type.

Let Boxn(T ) denote the number of tilings of a box of size n by tiles in a tile set T .

Theorem (Chandgotia & Meyerovitch - 2021)

Tilings by shapes in T can model all Zd actions if its entropy is equal to

lim sup
n→∞

1

nd
log(|Boxn(T )|).
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Modelling of Zd actions

If X (T ) is the space of tilings for a tile set T , is there an
equivariant Borel embedding from X to X (T )?

Theorem (Chandgotia & Meyerovitch - 2021)

Tilings by shapes in T can model all Zd actions if its entropy is
equal to

lim sup
n→∞

1

nd
log(|Boxn(T )|).

A small caveat here is that we have to get rid of a set of “universal
measure zero” from X . A lot of progress has been made to deal
with this caveat in recent work with Spencer Unger.
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If X (T ) is the space of tilings for a tile set T , is there an
equivariant Borel embedding from X to X (T )?

Theorem (Chandgotia & Meyerovitch - 2021, extensions by
Chandgotia & Unger)

Tilings by shapes in T can model all Zd actions if its entropy is
equal to

lim sup
n→∞

1

nd
log(|Boxn(T )|).

Following Kastelyn (1961) and Burton & Pemantle (1993) this
follows easily for domino tilings in two dimensions.

Theorem (Chandgotia)

For all dimensions, if T is the set of domino tiles then

h(T ) = lim sup
n→∞

1

nd
log(|Boxn(T )|).
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This needed fundamentally new ideas.

Again, we do not know anything about the general case beyond
dominos.
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Objective

We have three objectives:

1 Suppose we can tile the plane by a given set of tiles, can we
count approximately how many of them are there?

2 What kind of processes can tilings model?

3 What does a random tiling actually look like?
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The effect of boundary conditions is, however, not entirely trivial
and will be discussed in more detail in a subsequent paper. -

Kasteleyn, 1961

The general question here is the following: Suppose we are given a
‘nice’ subset of Zd . What does a random tiling of that region look

like?
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Cohn, Kenyon & Propp, 2000

Figure: Simulation by Martin Tassy
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Domino tilings of the Z3 lattice

None of the tools used for these theorems are available for domino
tilings of the Z3 lattice.

With Scott Sheffield and Catherine Wolfram, we have managed to
prove a variational principle for domino tilings of Z3.

We believe that everything extends to higher dimensions but this is
the subject of ongoing work.
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The monotiling conjecture

So maybe tiling by boxes is too difficult.

How about tilings by a single shape?

A subset A ⊂ Zd can tile Zd if disjoint copies of translates of A
can tile Zd .
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The monotiling conjecture

So maybe tiling by boxes is too difficult.

How about tilings by a single shape?

A subset A ⊂ Zd can tile Zd if disjoint copies of translates of A
can tile Zd .

Question (Monotiling conjecture - Lagarias & Wang 1996)

Suppose A can tile Zd , can it tile it periodically?
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Question (Monotiling conjecture - Lagarias & Wang 1996)

Suppose A can tile Zd , can it tile it periodically?

The actual question is Rd . It was conjectured by Fuglede that
such sets will have very nice spectral properties and was the
motivation behind the monotiling conjecture.

It was proved for R by Leptin and Müller in 1991 (see also
Lagarias & Wang (1996)). For Z this is an easy theorem to prove.
For Z2 this was proven by Bhattacharya (2016). In 2020 Greenfeld
&Tao proved that every tiling of Z2 can be decomposed into
finitely many parts each of which are periodic.

It is wide open in R2 and Zd for d > 2. There has been some
recent progress by Abhishek Khetan (2021) for tilings of Z3.
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Even for tilings of Z we do not have any understanding of what
kind of tiles can tile Z. This goes into some interesting number

theoretic questions (Coven & Meyerowitz, 1998).

Recently some progress was made on this by  Laba & Londner
(2021) when the cardinality of the tile has three prime factors.

Questions are very interesting and plenty and spread evenly over
many different areas.

Happy solving!!!
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