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Many thanks to Spencer Unger for hosting me in Toronto and
Balint Virag and Benjamin Landon for the invitation for this talk.
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This is joint work with Scott Sheffield and Catherine Wolfram.

All of the beautiful simulations and graphics have been made by
Scott Sheffield and Catherine Wolfram.
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What are the objects I am going to talk about?

Dimers are rectangular boxes in Rd with vertices in Zd one of
whose side length is 2 and the rest are 1.

It will be helpful at times to think of these dimers as a choice of
non-overlapping edges of the dual lattice in Zd which cover all the
vertices. These are called perfect matchings.

In this talk we will discuss tilings of Zd by dimers.

We will focus mostly on d = 3.

Figure : A dimer tiling on the left and a perfect matching on the right

4 / 91



What are the objects I am going to talk about?

Dimers are rectangular boxes in Rd with vertices in Zd one of
whose side length is 2 and the rest are 1.

It will be helpful at times to think of these dimers as a choice of
non-overlapping edges of the dual lattice in Zd which cover all the
vertices. These are called perfect matchings.

In this talk we will discuss tilings of Zd by dimers.

We will focus mostly on d = 3.

Figure : A dimer tiling on the left and a perfect matching on the right

5 / 91



What are the objects I am going to talk about?

Dimers are rectangular boxes in Rd with vertices in Zd one of
whose side length is 2 and the rest are 1.

It will be helpful at times to think of these dimers as a choice of
non-overlapping edges of the dual lattice in Zd which cover all the
vertices.

These are called perfect matchings.

In this talk we will discuss tilings of Zd by dimers.

We will focus mostly on d = 3.

Figure : A dimer tiling on the left and a perfect matching on the right

6 / 91



What are the objects I am going to talk about?

Dimers are rectangular boxes in Rd with vertices in Zd one of
whose side length is 2 and the rest are 1.

It will be helpful at times to think of these dimers as a choice of
non-overlapping edges of the dual lattice in Zd which cover all the
vertices. These are called perfect matchings.

In this talk we will discuss tilings of Zd by dimers.

We will focus mostly on d = 3.

Figure : A dimer tiling on the left and a perfect matching on the right

7 / 91



What are the objects I am going to talk about?

Dimers are rectangular boxes in Rd with vertices in Zd one of
whose side length is 2 and the rest are 1.

It will be helpful at times to think of these dimers as a choice of
non-overlapping edges of the dual lattice in Zd which cover all the
vertices. These are called perfect matchings.

In this talk we will discuss tilings of Zd by dimers.

We will focus mostly on d = 3.

Figure : A dimer tiling on the left and a perfect matching on the right

8 / 91



What are the objects I am going to talk about?

Dimers are rectangular boxes in Rd with vertices in Zd one of
whose side length is 2 and the rest are 1.

It will be helpful at times to think of these dimers as a choice of
non-overlapping edges of the dual lattice in Zd which cover all the
vertices. These are called perfect matchings.

In this talk we will discuss tilings of Zd by dimers.

We will focus mostly on d = 3.

Figure : A dimer tiling on the left and a perfect matching on the right 9 / 91



When can a set be tiled?

Figure : The red dots are the elements of P1 and the undotted ones are
the elements of P2. A dimer tiling does not exist because |P1| > |P2|.

Suppose we want to find out whether a set F ⊂ Zd can be perfectly

matched. The set F can be divided into two partite classes P1, P2. Now

if F can be perfectly matched, each vertex in P1 is perfectly matched

with each vertex in P2 and vice versa. In particular |P1| = |P2|.
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A criterion for finding a tiling: Hall’s marriage lemma

When can F ⊂ Zd be perfectly matched?

The answer comes from Hall’s marriage lemma.

Divide F into two partite classes P1, P2. Then F has a perfect
matching if and only if for i = 1, 2 and all subsets A ⊂ Bi the total
number of neighbours of A is larger than cardinality of A.
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A criterion for finding a tiling: Hall’s marriage lemma

Divide F into two partite classes P1, P2. Then F has a perfect matching
if and only if for i = 1, 2 and subsets A ⊂ Bi the total number of
neighbours of A is larger than cardinality of A.

Figure : The red dots are the elements of P1 and the undotted ones are
the elements of P2. It does not satisfy the criterion for perfect
matchings. There are five elements of P1 with the green shade with only
four neighbours. 16 / 91



Parity is important

In general parity is important. Thus we will distinguish two
different translates of the same domino but with different parity.
Zd will have 2d differ kinds of dominos.
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What do we want to find out about dimer tilings?

For us, it is not enough to find a tiling but we want to find out
what does a uniformly sampled tiling of a given subset of Z3 look
like?

This is a wide ranging question and we are interested in all possible
interpretations. However for this talk we will concentrate on a
certain large deviations principle.
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What is a large deviations principle?

As the name suggests, a large deviations principle captures the
deviation of the probability of events away from their mean
behaviour.

For instance, if we took independent tosses of a large number of
fair coins then we should expect heads roughly 1/2 the number of
times. It is not difficult to prove that the probability of deviating
from 1/2 by fixed constant x decays exponentially as the number
of coins goes to infinity.

Specifically, if N is the number of coins and MN is the difference of
the number of heads and tails then for x > 0

P(MN /N > x) ≈ e−N I (x).

Here I (x) is half the Shannon entropy.
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Some Simulations

Let us see some simulations to get a feeling for what the “mean
behaviour” of the domino tilings looks like.
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Some questions

Take a contractible open set R ⊂ R3 and take a sequence of sets
Rn ⊂ Z3 such that 1

n Rn approximates R in the Hausdorff topology.
We want to look at uniformly sampled tilings on Rn and study its
(possibly random/deterministic) limit as n→ ∞.

But before we make this more rigorous we need to first understand
in which space is this convergence happening.
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For this it will be instructive to understand how things are
formulated in 2 dimensions.

The starting point here is the height function introduced by
Thurston (in 1990 following Conway&Lagarias’s tiling groups).
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Thurston’s height functions
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Thurston’s height functions

Put a clockwise spiral on even sites and an anticlocwise spiral on
odd sites.
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Thurston’s height functions

Now walk along the tiling increasing the height by 1 in the
direction of the spiral.
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While this seems extremely ad-hoc, underlying these height
functions is some beautiful combinatorial group theory coming

from Conway and Lagarias (which we won’t have time for).
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Surfaces associated with domino tilings

Thus we can replace our domino tiling by a height function.

Its
graph can now be seen as a discrete surface.

Figure : From Thurston’s paper (1990)
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Variational (V) and large deviations (LD) principle by
Cohn, Kenyon and Propp, 2000

Theorem

Let R∗ ⊂ R2 be bounded by a piecewise smooth simple closed curve. Fix
a 2-Lipschitz height function hb on ∂R∗. There exists an extension of hb
to a 2-Lipschitz function hmax on R∗ such that the following holds.

(V) Let Rn ⊂ Z2 be such that the normalised height function of Rn

approximates hb and it can be tiled by dominos. Then the normalised
height function corresponding to a uniformly sampled domino tiling of Rn

converges to hmax almost surely.

(LD) Further if g is any other 2-Lipschitz extension of hb then the
number of domino tilings close to g is exponentially small as compared to
the total number of tilings.
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exponentially small as compared to the total number of tilings.

The number of dimer tilings close to g is a function of the gradient of g .

The gradient of g measures the rate of change in the height function.
The rate of change of the height function determines the “slope” of the
Gibbs measure close to the dimer tiling at that point. The entropy of
these Gibbs measures govern the number of dimer tilings close to g .

In this sense the function hmax above is the entropy maximiser with
boundary conditions hb.
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Along the way, they also prove many properties of this entropy
function like its strict convexity and continuity.

45 / 91



The effect of boundary conditions is, however, not entirely trivial
and will be discussed in more detail in a subsequent paper.

(Kastelyn-1960)
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What is the problem with one dimension higher?

There are no finite set of local moves which connects all tilings of a given
finite region.

There is no reasonable height function for dimer tilings of the Z3 lattice
(Meyerovitch).

A lot of work by Cohn, Kenyon and Propp heavily depended on the exact
solvability of the dimer model in two dimensions which goes back to
Kastelyn and Temperley-Fisher (1961). For instance the growth rate of
the number of dimer tilings of boxes is known to be∫ 1

0

∫ 1

0
log(4− 2 cos(2πα1)− 2 cos(2πα2))dα1dα2.

In fact the entropy maximiser from the previous slide is given by an

explicit partial differential equation. None of this carries forward to higher

dimensions.
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Dimer tilings of Z2

Figure : This was generated by Fusy and illustrates “the Artic circle
phenomena”
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Dimer tilings of Z2

Figure : This was generated by Rick Kenyon and illustrates “the Artic
circle phenomena”
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So instead of exact solvability we had to introduce softer
techniques.

But what about the height functions? How can we even formulate
the variational principle without them?

To this end, we define a discrete vector field associated with dimer
tilings.
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Discrete vector fields associated with dimer tilings

Label the even vertices of Z3 blue and the odd ones white.
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Discrete vector fields associated with dimer tilings

Now consider the flow growing from white to adjacent blue vertices
of unit strength each.
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Discrete vector fields associated with dimer tilings

Now for a given a domino tiling keep the flow along those edges
which are part of the tiling.
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These discrete vector fields on regions Rn ⊂ Z3 converge to
measurable divergence free vector fields on R∗ ⊂ R3 taking values

in a nice compact set O.

These act like replacements of height functions but are far more
difficult to work with.
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Variational (V) and large deviations (LD) principle by
C.,Sheffield and Wolfram

Theorem

Let R∗ ⊂ R3 be an open set with a piecewise smooth boundary. Fix a
measurable vector field hb on ∂R∗ which extends to a divergence free
measurable vector field on R taking values in O. There exists an
extension of hb to a divergence free vector field hmax on R∗ taking values
in O such that the following holds:

Let tn be a uniformly sampled tiling
flow whose boundary conditions ‘approximate’ hb.

(V) The flow tn converges to hmax almost surely.

(LD) Further if g is any other divergence free extension of hb taking

values in O then the probability of tn being close to g is exponentially

small.
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We also need and prove various properties like strict convexity and
continuity of the entropy as a function of the average flux.
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One last complication: Gibbs measures with extremal slope

Finally, to emphasise how different d = 2 and d = 3 are, in two
dimensions Gibbs measures with extremal slope are trivial (have

zero entropy).

For d = 3, Gibbs measures of extremal “slope” decompose as
lozenge tilings (which are important statistical physics models in

their own right).
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Lozenge tilings from extremal Gibbs measures on dimer
tilings
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Summary

There are many things we now know about dimer tilings in three
dimensions (and higher). For instance:

1 Ways to simulate uniform distribution on Z3.

2 The variational principle and the large deviations principle.

3 Nature of Gibbs measures with extremal “slope”.

And several things we don’t. For instance:

1 Exact solvability.

2 Whether any two tilings of a box can be connected by flips
and trits.
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Happy solving
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How to sample a random dimer tiling?

Fix a “nice” set Rn ⊂ Z3 with many domino tilings.

Since there are exponentially many possible tilings depending on
the size of Rn, it is not possible to list them and choose one
randomly.

The usual method to do such a thing is to take a given fixed tiling
and to iteratively modify it locally at randomly chosen spots to get
different tilings. Under suitable hypothesis, after sufficiently many
steps we have a sample which is close to the uniform distribution.

The important “suitable” hypothesis here is that one should be
able to go from any given tiling of Rn to any other tiling using
these local moves.
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Flips: Local moves in two dimensions

Given two adjacent dominos in the same direction we can always
replace them by dominos in the perpendicular direction (but in the
same plane). This is called a flip.

In two dimension any two domino tilings of a nice region R are
connected by a series of flips.
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However in three dimensions, even tilings of boxes are not
necessarily connected by a sequence of flips.

Clearly no flips are possible but there are many different possible
tilings of this box. This was found by Freedman, Hastings, Nayak,
and Qi in 2011.
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Trits

It was realised however that by introducing another move called
“trits”, at least the tilings of these two layered boxes become
connected to one another.

This was proved by Milet and Saldanha in 2017.
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Flips and Trits

Question (Freire, Klivans, Milet and Saldanha, 2017)

Are the tilings of boxes connected under flips and trits?

We don’t know. But for general regions they showed that flips and
trits are not enough. By modifying their example we concluded the
following.

Theorem (Chandgotia, Sheffield, Wolfram)

For any set of local moves there is a nice region Rn such that the
set of tilings of Rn is not connected by this set.

Yet we can construct credible simulations. The main idea for these
simulations come from Broder (1986)- “How easy is it to marry at
random?” with many similar variants going back all the way to
Edmonds (1963)- “Paths, Flowers and Trees”.
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The main observation which helps us simulate: The double
dimer model

If we superimpose two dimer configurations on a finite region R
then the edges either match up or they form loops of finite size.
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This is a very well-known fact and true for all graphs (not just the
integer lattice). Using this one can write an algorithm to generate
a uniform sample.

One caveat though! We do not have any grip on the convergence
rate of our Markov chains. This analysis is still open.

So now we have these simulations which strongly indicate a certain
limiting behaviour.

87 / 91



This is a very well-known fact and true for all graphs (not just the
integer lattice). Using this one can write an algorithm to generate
a uniform sample.

One caveat though! We do not have any grip on the convergence
rate of our Markov chains. This analysis is still open.

So now we have these simulations which strongly indicate a certain
limiting behaviour.

88 / 91



This is a very well-known fact and true for all graphs (not just the
integer lattice). Using this one can write an algorithm to generate
a uniform sample.

One caveat though! We do not have any grip on the convergence
rate of our Markov chains. This analysis is still open.

So now we have these simulations which strongly indicate a certain
limiting behaviour.

89 / 91



This is a very well-known fact and true for all graphs (not just the
integer lattice). Using this one can write an algorithm to generate
a uniform sample.

One caveat though! We do not have any grip on the convergence
rate of our Markov chains. This analysis is still open.

So now we have these simulations which strongly indicate a certain
limiting behaviour.

90 / 91



Double dimer model: Recent results

Recently Quitmann and Taggi (2022) proved that the double dimer
model on higher dimensional torii (d ≥ 3) has macroscopic (long)
loops.

This shows that the behaviour of the double dimer model in higher
dimensions is very different from d = 2.

91 / 91




