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In this talk we will be reporting results with Tom Meyerovitch
(2020) and ongoing work with Spencer Unger and also some with

Scott Sheffield.
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Framework

Let X be a Polish space and consider a Zd action T on X by
homeomorphisms.

We want to understand the assumptions on the dynamical system
(X , T ) which implies that it is ‘universal’.

By ‘universal’ we mean that ‘any’ free system (Y , S) (with low
enough entropy) can be Borel embedded into (X , T ).
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For most of the talk X will be shift-invariant spaces.

If you are not familiar with entropy think of it as “size” for the
time being. We will come back to it later in the talk to provide
more intuition.
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Shift-invariant spaces

Let AZd
be the full shift where Zd acts by shifts.

For all~i ∈ Zd , the shift action σ : AZd → AZd
is given by

σ
~i (x)~j := x~i+~j .

Figure : Shift action.
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Shift-invariant spaces

Let AZd
be the full shift where Zd acts by shifts.

For all~i ∈ Zd , the shift action σ : AZd → AZd
is given by

σ
~i (x)~j := x~i+~j .

Figure : Moving to the left, σ(1,0).
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Shift-invariant spaces

Let AZd
be the full shift where Zd acts by shifts.

For all~i ∈ Zd , the shift action σ : AZd → AZd
is given by

σ
~i (x)~j := x~i+~j .

Figure : Moving up σ(0,−1).
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The starting point of our interest

(X , T ) is universal if ‘any’ free system (Y , S) (with low enough
entropy) can be Borel embedded into (X , T ).

Theorem (Hochman 2013/2019)

The full shift (AZ, σ) is universal.

This was following a huge body of work including that by Krieger (1970), Tserunyan
(2015) and answered a long-standing open question by Benjy Weiss.

Theorem (Quas, Soo 2012)

Let T : (R/Z)d → (R/Z)d be a ergodic toral automorphism. Then ((R/Z)d , T ) is
‘ergodic’ universal.

By ’ergodic’ universal, we mean embedding of ergodic measure preserving systems
(Y , ν, S) instead of all dynamical systems (Y , S).

Theorem (Robinson and Şahin, 2003)

If a shift space (X , σ) has strong enough ‘mixing’ conditions then it is ergodic
universal.
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The direction of our work

We (Chandgotia-Meyerovitch and Chandgotia-Unger) found mixing
conditions which are weak enough so that a large number of
systems satisfy it

but are strong enough to imply universality (with
various adjectives).

This answered various questions raised by Robinson-Şahin (2003),
Quas-Soo (2012), Gao-Jackson (2015) and Boyle-Buzzi (2017) and
recovered a result by Burguet (2020) and by
Gao-Jackson-Krohne-Seward.
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Here is the structure for the rest of the talk.

1 Entropy : A swift introduction

2 Some shift-invariant spaces : Concentrating on the ones I love

3 What do we need for universality: Some hard combinatorial
question which are simple to state!

4 Some open questions: Why we have barely gotten started!
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Entropy : A swift introduction
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Partitions and their refinement

Let (X , T ) be a Zd dynamical system. Given a partition P of X ,
for boxes [1, n]d we will consider the refined partition

P (n) := ∨~i∈[1,n]d T−
~i (P).
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Entropy

Let (X , T ) be a Zd dynamical system. Given a finite Borel partition P
of X , for boxes [1, n]d we will consider the refined partition

P (n) := ∨~i∈[1,n]d T−
~i (P).

The size of P (n) is bounded above by |P |nd
.

The space (X , T ) has (Gurevich) entropy h =: h(X , T ) if it is the
smallest number for which

1 For all invariant probability measures µ on (X , T )

2 For all finite partition P

3 ε > 0

for all large enough n, there exists Q ⊂ P(n) such that

1 |Q | < ehnd

2 µ(Q) > 1− ε.
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If X is compact, this Gurevich entropy is the same as the
topological entropy.
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A vague direction

This definition is a result of several theorems like the variational
principle and Shannon-McMillan theorem none of which is
available in the Polish setting.

Question

Are there other ways in which we can say that X \Q is small
(which do not involve invariant probability measures)?

This is the starting point of a long list of questions which lie at the
heart of going from almost universality to universality.
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Entropy for shift spaces
Let (X , T ) be a Zd dynamical system. Given a finite Borel partition P of X , for boxes [1, n]d we will consider the
refined partition

P(n) := ∨~i∈[1,n]d
T−~i (P).

The space (X , T ) has (Gurevich) entropy h+ : h(X , T ) if it is the smallest number for which

1 For all invariant probability measures µ on (X , T )

2 For all finite partition P

3 ε > 0

for all large enough n, there exists Q ⊂ P(n) such that

1 |Q| < ehnd

2 µ(Q) > 1− ε.

If X is a shift space then it can be calculated by the following
simple (but often difficult to compute) formulae.

Entropy of (X , σ) := lim
n→∞

1

nd
log(number of patterns in X on [1, n]d ).

So the entropy of (AZd
, σ) is log |A|.
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1 Entropy : A swift introduction X
2 Some shift-invariant spaces : Concentrating on the ones I love

3 What do we need for universality: Some hard combinatorial
question which are simple to state!

4 Some open questions: Why we have barely gotten started!
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Some examples of shift spaces.

44 / 118



Domino Tilings

Domino tilings are tilings of Zd by rectangular parallelepipeds one
of whose sides has length 2 and the rest have length 1.
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Domino tilings as a part of coprime box shifts

This is a special case of what are called coprime box shifts.

Given a box B ⊂ Zd , its side length in the i th direction is denoted
by πi (B).

We say that a set of boxes T1, T2, . . . , Tk are coprime if for each
1 ≤ i ≤ d , πi (T1), πi (T2), . . . ,πi (Tk) are coprime.

All the tilings by a set of coprime boxes form a coprime box shift.

For example tilings by boxes exactly one of whose side length is
k + 1 and the rest are k gives us a coprime box shift.
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Coprime box shifts

Given a box B ⊂ Zd , its side length in the i th direction is denoted by πi (B). We say that a set of boxes

T1, T2, . . . , Tk are coprime if for each 1 ≤ i ≤ d , πi (T1), πi (T2), . . . ,πi (Tk ) are coprime. All the tilings by a set

of coprime boxes forms a coprime box shift.

Question (Şahin and Robinson, 2003)

Are domino tilings universal?

Theorem (Prikhod’ko(1999), Şahin (2009))

If (X , σ) is coprime box shift and (Y , ν, S) is any free Zd dynamical system then there
is a factor from (Y , S) to (X , σ) (up to ν-null set).

Question (Gao-Jackson (2015))

Is it necessary to get rid of a ν-null set? (rephrasing their question)

Theorem (Chandgotia-Meyerovitch 2020)

If (X , σ) is coprime box shift and (Y , S) is any free Zd dynamical system then there is
a factor from (Y , S) to (X , σ) (up to a universally null set). Domino tilings are almost
universal.
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If (Y , S) is a shift space whose entropy is lower than that of the
domino tilings then (up to periodic points) there is a Borel
embedding from (Y , S) to the space of domino tilings.
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1 Entropy : A swift introduction X
2 Some shift-invariant spaces : Concentrating on the ones I love

X
3 What do we need for universality: Some hard combinatorial

question which are simple to state!

4 Some open questions: Why we have barely gotten started!
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What does one need for universality?
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The road to flexibility

When we began this problem, I spoke to Benjamin Weiss about
possible approaches to the question.

Roughly, what he said is that if there is a constant N such that
given patterns a1, a2, . . . an on boxes (separated by N) you can
extend it to a valid element of the shift space, then you will have
universality.

a1
a3

a4a5a6

a7

a2>N

This was disappointing because nothing like this can hold for
domino tilings.
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Domino Tilings don’t mix well

Mixing properties govern how easy is to approximate two separated
orbit segments. Domino tilings don’t have great mixing properties.

This pattern completely determines what can be placed for distance N/2

N

64 / 118



Domino Tilings don’t mix well

Mixing properties govern how easy is to approximate two separated
orbit segments. Domino tilings don’t have great mixing properties.

This pattern completely determines what can be placed for distance N/2

N

65 / 118



Domino Tilings don’t mix well

Mixing properties govern how easy is to approximate two separated
orbit segments. Domino tilings don’t have great mixing properties.

This pattern completely determines what can be placed for distance N/2

N

66 / 118



Domino Tilings don’t mix well

Mixing properties govern how easy is to approximate two separated
orbit segments. Domino tilings don’t have great mixing properties.

This pattern completely determines what can be placed for distance N/2

N

67 / 118



Domino Tilings don’t mix well

Mixing properties govern how easy is to approximate two separated
orbit segments. Domino tilings don’t have great mixing properties.

This pattern completely determines what can be placed for distance N/2

N

68 / 118



But Benjy is always right.
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Language

Given a shift space X and shape B ⊂ Zd , we denote by L(X , B)
the set of patterns appearing on the shape B, that is,

L(X , B) := {x |B : x ∈ X}.
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Flexible sequence

Given a shift space X a flexible sequence with gap k and scaling N
is a sequence

C = (C (N.B) ⊂ L(X , N.B); B is a box)

such that for all boxes B, B1, . . . , Bt for which

1 N.B1, N.B2, . . . , N.Bt ⊂ N.B

2 And are separated from each other and the boundary of B by
distance k

and all patterns bt ∈ C (N.Bt) there exists

b ∈ C (N.B)

for which
b|N.Bt := bt .
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Flexible sequence for domino tilings

Given a shift space X a flexible sequence with gap k and scaling N is a sequence

C = (C (N.B) ⊂ L(X , N.B); B is a box)

such that for all boxes B, B1, . . . , Bt for which

1 N.B1, N.B2, . . . , N.Bt ⊂ N.B

2 And are separated from each other and the boundary of B by distance k

and all patterns bt ∈ C (N.Bt ) there exists
b ∈ C (N.B)

for which
b|N.Bt

:= bt .

For domino tilings the gap is 6d , the scaling is 2 and C (2.B) is the
set of proper domino tilings of the box 2.B.

For coprime box tilings the scaling is the product of lengths of the
sides of the boxes (say N), the gap is 6Nd and C (N.B) is the set
of proper tilings of the box N.B.
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Flexible sequence for domino tilings

Patterns like these on boxes separated by distance 3 can be (easily)
extended to a domino tiling of the Z2 lattice.
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Flexible sequence for other spaces
Given a shift space X a flexible sequence with gap k and scaling N is a sequence

C = (C (N.B) ⊂ L(X , N.B); B is a box)

such that for all boxes B, B1, . . . , Bt for which

1 N.B1, N.B2, . . . , N.Bt ⊂ N.B

2 And are separated from each other and the boundary of B by distance k

and all patterns bt ∈ C (N.Bt ) there exists
b ∈ C (N.B)

for which
b|N.Bt

:= bt .

A large class of spaces have flexible sequences: Proper
3-colourings, space of graph homomorphisms, space of
self-avoiding walks on the Zd lattice, directed bi-infinite
Hamiltonian paths and so on.

While we defined this for shift spaces, a corresponding (and much
more involved) notion exists for general topological dynamical
systems.
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But what is flexibility good for?

Given a flexible sequence

C = (C (N.B); B is a box)

of scaling N, its entropy is given by

h(C) := lim
n→∞

1

Nd nd
log |C (N.[1, nd ])|.

Theorem (Chandgotia, Meyerovitch 2020)

If X is a shift space with a flexible sequence of entropy h(C) then
for any free dynamical system (Y , S) of entropy less than h(C)
there exists an embedding from (Y , S) to (X , σ) up to a
universally null set.

For a particular system one may ask: Is h(C) = h(X , T )? This is a
key question and of extremely challenging nature.
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Is h(C) = h(X ,T )? Domino tilings

It follows from work by Kastelyn (1961), Temperley-Fisher (1961)
and Burton-Pemantle (1993) that

1

(2N)2
log

(
|domino tilings of a [1, 2N ]2|

)
→ h(domino tilings, σ),

that is,

in the computation of entropy we only need to care
about the patterns as on the right.

In ongoing work with Scott Sheffield, we have extended this result
to higher dimensions.

87 / 118



Is h(C) = h(X ,T )? Domino tilings

It follows from work by Kastelyn (1961), Temperley-Fisher (1961)
and Burton-Pemantle (1993) that

1

(2N)2
log

(
|domino tilings of a [1, 2N ]2|

)
→ h(domino tilings, σ),

that is,

in the computation of entropy we only need to care
about the patterns as on the right.

In ongoing work with Scott Sheffield, we have extended this result
to higher dimensions.

88 / 118



We know close to nothing about h(C) for general coprime shifts.

Question

Let T be a set of coprime boxes. Let N be the product of length
of the sides of T. Prove that

lim
n→∞

1

Nd nd
log(the number of tilings of [1, Nn]d by elements of T) = topological entropy of all the tilings by T.
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This gives you a rough idea of the combinatorial challenges
involved in proving this result.

Now let us talk about how we can push the results from the almost
Borel world to the Borel world. For this we needed a result by

Gao-Jackson-Krohne-Seward.
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An analogue of Rokhlin’s lemma by Gao, Jackson, Krohne
and Seward

Theorem (Chandgotia, Meyerovitch 2020)

If X is a shift space with a flexible sequence of entropy h(C) then
for any free dynamical system (Y , S) of entropy less than h(C)
there exists an embedding from (Y , S) to (X , σ) up to a
universally null set.

When I was talking about this at the Hebrew university, Spencer
Unger was talking about his circle squaring paper with Andrew
Marks (which might seem completely unrelated). This is where I
heard of the analogue of Rokhlin’s lemma developed by Gao,
Jackson, Krohne and Seward.

This was the key to pushing our result to the Borel category.
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For this we needed a stronger notion of flexibility.
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Strong flexibility
Given a shift space X a flexible sequence

C = (C (N.B); B is a box)

with gap k and scaling N is a sequence of

a special set of patterns C (N.B) which appear in X for a box N.B

such that for all boxes B, B1, . . . , Bt for which
1 N.B1, N.B2, . . . , N.Bt ⊂ N.B
2 And are separated from each other and the boundary of B by distance k

and all patterns bt ∈ C (N.Bt ) there exists
b ∈ C (N.B)

such that
b|N.Bt

:= bt .

A strongly flexible sequence is a sequence of patterns not just on boxes but on simply
connected union of boxes aligned to a grid.

Theorem (Chandgotia-Unger, ongoing)

If (X , σ) has a strongly flexible sequence C and (Y , S) is any free Zd dynamical
system then there is a factor from (Y , S) to the free part of (X , σ). There is no need
to get rid of the universally null set.

If (Y , σ) is a shift space whose entropy is lower than that of h(C) then there is a Borel
embedding from (Y , σ) into (X , σ).
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There are many shift spaces with strongly flexible sequences.

This includes a large class of spaces: Proper 3-colourings, directed
bi-infinite Hamiltonian paths (recovering results by Gao, Jackson,
Krohne and Seward and

strengthening results by Downarowicz,
Oprocha and Zhang in the ergodic category for the latter), space
of graph homomorphisms, space of self-avoiding walks on the Zd

lattice, and so on.
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1 Entropy : A swift introduction X
2 Some shift-invariant spaces : Concentrating on the ones I love

X
3 What do we need for universality: Some hard combinatorial
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4 Some open questions: Why we have barely gotten started!
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Open questions
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Open questions

1 Prove that there exists universal subshifts whose entropies
form a dense set in R.

This would imply that subshifts with
strongly flexible sequences are universal.

2 Let (X , T ) and (Y , S) be dynamical systems. Suppose there
is a bijection φ from the space of invariant ergodic probability
measures on (X , T ) to those on (Y , S) such that (X , µ, T ) is
isomorphic to (Y , φ(µ), S). Is (X , T ) isomorphic to (Y , S)
(up to universally null sets)?

3 Let T be a set of coprime boxes. Let N be the product of
length of the sides of T. Prove that

lim
n→∞

1

Nd nd
log(the number of tilings of [1, Nn]d by elements of T) = topological entropy of all the tilings of T.

4 Rd actions?
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