Markov Random Fields and Gibbs States

Nishant Chandgotia

Tel Aviv University

June, 2016

Outline

- Homomorphism spaces
- Markov random fields and Gibbs states
- When are Markov random fields Gibbs states?
- Describing conditions on the support
 - All Markov random fields are Gibbs: Dismantlable graphs and the 3-coloured chessboard
 - Not all Markov random fields are Gibbs: The square island shift
- The pivot property

• $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ is a locally-finite undirected graph.

- $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ is a locally-finite undirected graph.
- $\, \bullet \, \, \mathfrak{A}$ is a finite set of symbols.

- $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ is a locally-finite undirected graph.
- $\, \bullet \, \, \mathfrak{A}$ is a finite set of symbols.
- $X \subset \mathfrak{A}^{\mathcal{V}_{\mathcal{G}}}$ is a closed set

- $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ is a locally-finite undirected graph.
- \mathfrak{A} is a finite set of symbols.
- $X \subset \mathfrak{A}^{\mathcal{V}_{\mathcal{G}}}$ is a closed set
- For a finite set $A \subset \mathcal{V}_{\mathcal{G}}$ and a pattern $a : A \longrightarrow \mathfrak{A}$,

• -Elements of A

- $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ is a locally-finite undirected graph.
- \mathfrak{A} is a finite set of symbols.
- $X \subset \mathfrak{A}^{\mathcal{V}_{\mathcal{G}}}$ is a closed set
- For a finite set $A \subset \mathcal{V}_{\mathcal{G}}$ and a pattern $a : A \longrightarrow \mathfrak{A}$,

$$[a]_A := \{x \in X \mid x|_A = a\}$$
 (Cylinder set)

• -Elements of A

Cylinder set [4,3,1] A

- $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ is a locally-finite undirected graph.
- $\, \bullet \, \, \mathfrak{A}$ is a finite set of symbols.
- $X \subset \mathfrak{A}^{\mathcal{V}_{\mathcal{G}}}$ is a closed set
- For a finite set $A \subset \mathcal{V}_{\mathcal{G}}$ and a pattern $a : A \longrightarrow \mathfrak{A}$,

$$\begin{aligned} &[a]_A &:= \{ x \in X \mid x|_A = a \} \text{ (Cylinder set)} \\ &\partial A &:= \{ v \in \mathcal{V}_{\mathcal{G}} \setminus A \mid v \sim w \in A \} \text{ (Boundary)}. \end{aligned}$$

- -Elements of A
- -Elements of the boundary of A

• $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$ is a finite undirected graph without multiple edges.

- $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$ is a finite undirected graph without multiple edges.
- X = Hom(ℤ^d, ℋ) is the space of all graph homomorphisms from ℤ^d to ℋ.

- $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$ is a finite undirected graph without multiple edges.
- X = Hom(ℤ^d, ℋ) is the space of all graph homomorphisms from ℤ^d to ℋ.

Examples: (The 3-coloured chessboard)

- $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$ is a finite undirected graph without multiple edges.
- X = Hom(ℤ^d, ℋ) is the space of all graph homomorphisms from ℤ^d to ℋ.

Examples: (The 3-coloured chessboard)

- $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$ is a finite undirected graph without multiple edges.
- X = Hom(ℤ^d, ℋ) is the space of all graph homomorphisms from ℤ^d to ℋ.

Examples: (Hard square model)

- $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$ is a finite undirected graph without multiple edges.
- X = Hom(ℤ^d, ℋ) is the space of all graph homomorphisms from ℤ^d to ℋ.

O

Examples: (Hard square model)

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_{\mathcal{G}}$, the configuration y given by

$$y_m = \begin{cases} x_m & \text{if } m \neq n \\ \star & \text{if } m = n \end{cases}$$

is an element of X.

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_{\mathcal{G}}$, the configuration y given by

$$y_m = \begin{cases} x_m & \text{if } m \neq n \\ \star & \text{if } m = n \end{cases}$$

is an element of X.

The space $X = Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star if and only if for all $v \in \mathcal{H}, \star \sim v$.

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_{\mathcal{G}}$, the configuration y given by

$$u_m = \begin{cases} x_m & \text{if } m \neq n \\ \star & \text{if } m = n \end{cases}$$

is an element of X.

The space $X = Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star if and only if for all $v \in \mathcal{H}$, $\star \sim v$. Thus 0 is a safe symbol for the hard square model

X has a safe symbol \star if for all $x \in X$ and $n \in \mathcal{V}_{\mathcal{G}}$, the configuration y given by

$$u_m = \begin{cases} x_m & \text{if } m \neq n \\ \star & \text{if } m = n \end{cases}$$

is an element of X.

The space $X = Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star if and only if for all $v \in \mathcal{H}, \star \sim v$. Thus 0 is a safe symbol for the hard square model but the 3-coloured chessboard model does not have any safe symbol.

A Markov random field (MRF) is a probability measure μ on $\mathcal{A}^{\mathcal{V}_{\mathcal{G}}}$

A Markov random field (MRF) is a probability measure μ on $\mathcal{A}^{\mathcal{V}_{\mathcal{G}}}$ such that for all finite $A, B \subset \mathcal{V}_{\mathcal{G}}, \partial A \subset B \subset A^{c}$

- -Elements of A
- –Elements of B
- –Elements of the boundary of A

A Markov random field (MRF) is a probability measure μ on $\mathcal{A}^{\mathcal{V}_{\mathcal{G}}}$ such that for all finite A, $B \subset \mathcal{V}_{\mathcal{G}}$, $\partial A \subset B \subset A^c$ and $a \in \mathfrak{A}^{A}$, $b \in \mathfrak{A}^{B}$ satisfying $\mu([b]_{B}) > 0$

- –Elements of A
- -Elements of B
- –Elements of the boundary of A

A Markov random field (MRF) is a probability measure μ on $\mathcal{A}^{\mathcal{V}_{\mathcal{G}}}$ such that for all finite $A, B \subset \mathcal{V}_{\mathcal{G}}, \partial A \subset B \subset A^{c}$ and $a \in \mathfrak{A}^{A}, b \in \mathfrak{A}^{B}$ satisfying $\mu([b]_{B}) > 0$

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathcal{V}_{\mathcal{G}}$ finite and $b \in \mathfrak{A}^{\partial A}$ is called the specification for the measure μ . It might not have any finite description.

A nearest neighbour (n.n.) interaction on X

A nearest neighbour (n.n.) interaction on X is a function

$$V: \{[a]_A \mid A \text{ is an edge or vertex in } \mathcal{G}\} \longrightarrow \mathbb{R}.$$

A nearest neighbour (n.n.) interaction on X is a function

$$V: \{[a]_A \mid A \text{ is an edge or vertex in } \mathcal{G}\} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and finite set $A \subset V_{\mathcal{G}}$

A nearest neighbour (n.n.) interaction on X is a function

$$V:\{[a]_A \,|\, A ext{ is an edge or vertex in } \mathcal{G}\} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and finite set $A \subset V_{\mathcal{G}}$

$$\mu([x]_{\mathcal{A}} \mid [x]_{\partial \mathcal{A}}) = \frac{\prod_{C \subset \mathcal{A} \cup \partial \mathcal{A}} e^{V([x]_{C})}}{Z_{\mathcal{A}, x|_{\partial \mathcal{A}}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor dependent upon A and $x|_{\partial A}$.

A nearest neighbour (n.n.) interaction on X is a function

$$V:\{[a]_A \,|\, A ext{ is an edge or vertex in } \mathcal{G}\} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and finite set $A \subset V_{\mathcal{G}}$

$$\mu([x]_{\mathcal{A}} \mid [x]_{\partial \mathcal{A}}) = \frac{\prod_{C \subset \mathcal{A} \cup \partial \mathcal{A}} e^{V([x]_{C})}}{Z_{\mathcal{A}, x|_{\partial \mathcal{A}}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor dependent upon A and $x|_{\partial A}$.

If $\mathcal{G} = \mathbb{Z}^d$ the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description:

A nearest neighbour (n.n.) interaction on X is a function

$$V:\{[a]_A \,|\, A ext{ is an edge or vertex in } \mathcal{G}\} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and finite set $A \subset V_{\mathcal{G}}$

$$\mu([x]_{\mathcal{A}} \mid [x]_{\partial \mathcal{A}}) = \frac{\prod_{C \subset \mathcal{A} \cup \partial \mathcal{A}} e^{V([x]_{C})}}{Z_{\mathcal{A}, x|_{\partial \mathcal{A}}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor dependent upon A and $x|_{\partial A}$.

If $\mathcal{G} = \mathbb{Z}^d$ the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description: all we need is

A nearest neighbour (n.n.) interaction on X is a function

$$V:\{[a]_A \,|\, A ext{ is an edge or vertex in } \mathcal{G}\} \longrightarrow \mathbb{R}.$$

A Gibbs state with a n.n. interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and finite set $A \subset V_{\mathcal{G}}$

$$\mu([x]_{\mathcal{A}} \mid [x]_{\partial \mathcal{A}}) = \frac{\prod_{C \subset \mathcal{A} \cup \partial \mathcal{A}} e^{V([x]_{C})}}{Z_{\mathcal{A}, x|_{\partial \mathcal{A}}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor dependent upon A and $x|_{\partial A}$.

If $\mathcal{G} = \mathbb{Z}^d$ the specification of a Gibbs state with a shift-invariant n.n. interaction has a finite description: all we need is the interaction V.

Example: If a shift-invariant n.n. interaction on the hard square model is given by

Example: If a shift-invariant n.n. interaction on the hard square model is given by

that is,

$$V([00]_{\vec{0},\vec{e}_i}) = V([10]_{\vec{0},\vec{e}_i}) = V([01]_{\vec{0},\vec{e}_i}) = 0,$$

 $V([0]_{\vec{0}}) = 0 \text{ and } V([1]_{\vec{0}}) = 1$

then

Example: If a shift-invariant n.n. interaction on the hard square model is given by

that is,

$$\begin{split} V([00]_{\vec{0},\vec{e}_i}) &= V([10]_{\vec{0},\vec{e}_i}) = V([01]_{\vec{0},\vec{e}_i}) = 0, \\ V([0]_{\vec{0}}) &= 0 \text{ and } V([1]_{\vec{0}}) = 1 \end{split}$$

then

$$\mu([x]_{\mathcal{A}} \mid [x]_{\partial \mathcal{A}}) = \frac{\prod\limits_{C \subset \mathcal{A} \cup \partial \mathcal{A}} e^{V([x]_{C})}}{Z_{\mathcal{A}, x|_{\partial \mathcal{A}}}} = \frac{e^{\text{number of } 1's \text{ in } x|_{\mathcal{A} \cup \partial \mathcal{A}}}}{Z_{\mathcal{A}, x|_{\partial \mathcal{A}}}}.$$

Question: Under what conditions on the support is every MRF a Gibbs state for some n.n. interaction?
Conditions on the support such that every MRF is Gibbs for some *n.n.* interaction

• The support has a safe symbol: Hammersley and Clifford ('71)

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G} : Lauritzen ('96)

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G} : Lauritzen ('96)
- For shift-invariant measures and G = Z under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G} : Lauritzen ('96)
- For shift-invariant measures and G = Z under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and G = Z: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

Conditions on the support such that every MRF is Gibbs for some *n.n.* interaction

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G} : Lauritzen ('96)
- For shift-invariant measures and G = Z under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and G = Z: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

New Results:

Conditions on the support such that every MRF is Gibbs for some *n.n.* interaction

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G} : Lauritzen ('96)
- For shift-invariant measures and G = Z under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and G = Z: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

New Results:

• The support is the 3-coloured chessboard model.

Conditions on the support such that every MRF is Gibbs for some *n.n.* interaction

- The support has a safe symbol: Hammersley and Clifford ('71)
- Algebraic conditions on the support and \mathcal{G} is a finite graph: Sturmfels, Gieger and Meek ('06)
- Conditions on the graph \mathcal{G} : Lauritzen ('96)
- For shift-invariant measures and G = Z under some mixing conditions on the support (but infinite set of symbols): Georgii ('88)
- For shift-invariant measures and G = Z: Chandgotia, Han, Marcus, Meyerovitch and Pavlov ('11)

New Results:

- The support is the 3-coloured chessboard model.
- A generalisation of the Hammersley-Clifford theorem when ${\cal G}$ is bipartite.

MRFs which need not be Gibbs for any n.n. interaction:

MRFs which need not be Gibbs for any n.n. interaction:When G is a finite graph: Moussouris ('74)

MRFs which need not be Gibbs for any n.n. interaction:

- When \mathcal{G} is a finite graph: Moussouris ('74)
- When $\mathcal{G} = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)

MRFs which need not be Gibbs for any n.n. interaction:

- When \mathcal{G} is a finite graph: Moussouris ('74)
- When $\mathcal{G} = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)
- When the alphabet is countable: Georgii ('88)

MRFs which need not be Gibbs for any n.n. interaction:

- When \mathcal{G} is a finite graph: Moussouris ('74)
- When $\mathcal{G} = \mathbb{Z}$ and the measure is not shift-invariant: Dobrushin ('68)
- When the alphabet is countable: Georgii ('88)

New Results:

 For G = Z² we constructed a family of shift-invariant MRFs which are not Gibbs for any shift-invariant finite-range interaction (not just nearest neighbour).

Consider an undirected finite graph \mathcal{H} .

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

 \mathcal{H} can be folded to a graph $\mathcal{H} \setminus \{v\}$ if there exists a vertex $w \in \mathcal{H}$ such that $N(v) \subset N(w)$.

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

Consider an undirected finite graph \mathcal{H} . N(v) denotes the *neighbourhood* of v in \mathcal{H} , that is,

$$N(v) = \{s \in \mathcal{H} \mid s \sim v\}.$$

$$\bigcirc$$

If $Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_{\mathcal{H}}$, $N(v) \subset N(\star) = \mathcal{V}_{\mathcal{H}}$ and thus all vertices v can be folded into \star .

If $Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_{\mathcal{H}}$, $N(v) \subset N(\star) = \mathcal{V}_{\mathcal{H}}$ and thus all vertices v can be folded into \star . Then \mathcal{H} is dismantlable.

If $Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_{\mathcal{H}}$, $N(v) \subset N(\star) = \mathcal{V}_{\mathcal{H}}$ and thus all vertices v can be folded into \star . Then \mathcal{H} is dismantlable.

However there are dismantlable graphs \mathcal{H} even if $Hom(\mathbb{Z}^d, \mathcal{H})$ does not have a safe symbol.

If $Hom(\mathbb{Z}^d, \mathcal{H})$ has a safe symbol \star then for all vertices $v \in \mathcal{V}_{\mathcal{H}}$, $N(v) \subset N(\star) = \mathcal{V}_{\mathcal{H}}$ and thus all vertices v can be folded into \star . Then \mathcal{H} is dismantlable.

And there are graphs where no folding is possible. Let C_n denote the *n*-cycle.

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14) If \mathcal{H} is either

• C_n for some n or

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14) If ${\cal H}$ is either

- C_n for some n or
- dismantlable

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14) If \mathcal{H} is either

- C_n for some n or
- dismantlable

then any MRF on $Hom(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction.

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14) If $\mathcal H$ is either

- C_n for some n or
- dismantlable

then any MRF on $Hom(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14) If $\mathcal H$ is either

- C_n for some n or
- dismantlable

then any MRF on $Hom(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.

In fact we prove further and generalise the Hammersley-Clifford theorem when the underlying graph ${\cal G}$ is bipartite.

Theorem (Chandgotia and Meyerovitch '13, Chandgotia '14) If $\mathcal H$ is either

- C_n for some n or
- dismantlable

then any MRF on $Hom(\mathbb{Z}^d, \mathcal{H})$ is a Gibbs state for some n.n. interaction. Further if the MRF is shift-invariant then it is a Gibbs state for some shift-invariant n.n. interaction.

In fact we prove further and generalise the Hammersley-Clifford theorem when the underlying graph \mathcal{G} is bipartite.

How can such a theorem be proved?
A space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

A space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

• $Hom(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} is dismantlable.

A space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- $Hom(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} is dismantlable.
- $Hom(\mathbb{Z}^d,\mathcal{H})$ when $\mathcal H$ does not have a four-cycle.

A space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- $Hom(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} is dismantlable.
- $Hom(\mathbb{Z}^d, \mathcal{H})$ when \mathcal{H} does not have a four-cycle.
- Domino tilings.

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	2	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	2	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1		1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1		1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1		1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1		1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

Suppose μ is a Markov random field whose support has the pivot property.

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

$$\frac{\mu([x]_F \mid [x]_{\partial F})}{\mu([y]_F \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F \mid [x^i]_{\partial F})}{\mu([x^{i+1}]_F \mid [x^i]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} \mid [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} \mid [x^i]_{\partial m_i})}.$$

Therefore the entire specification is determined by finitely many parameters viz.

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

Thus the space of specifications on $supp(\mu)$ can be parametrised by finitely many parameters. **Question:** Suppose we are given a nearest neighbour shift of finite type with the pivot property. Is there an algorithm to determine the number of parameters which describes the specification?

A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$,

A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and

$$\mathbf{v}_{3} = \frac{\mu(\left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix})}{\mu(\left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix})}.$$

A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then

$$v_{1} = exp(V(01) + V(10) + V(\frac{0}{1}) + V(\frac{0}{1}))$$

$$-V(21) - V(12) - V(\frac{1}{2}) - V(\frac{1}{2})),$$

$$v_{2} = exp(V(12) + V(21) + V(\frac{1}{2}) + V(\frac{1}{2}))$$

$$-V(02) - V(20) - V(\frac{0}{2}) - V(\frac{0}{2})),$$

$$v_{3} = exp(V(02) + V(20) + V(\frac{0}{2}) + V(\frac{0}{2}))$$

$$-V(01) - V(10) - V(\frac{0}{1}) - V(\frac{1}{0})).$$

 μ is Gibbs if and only if $v_1v_2v_3 = 1$.

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1v_2v_3 = 1$.

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1v_2v_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1v_2v_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold?

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1v_2v_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.

Square Island Shift

Inspired by the checkerboard island shift by Quas and Sahin we constructed

Square Island Shift

Inspired by the checkerboard island shift by Quas and Şahin we constructed the square island shift; it is a space of configurations X on \mathbb{Z}^2 which look like

Square Island Shift

Inspired by the checkerboard island shift by Quas and Şahin we constructed the square island shift; it is a space of configurations X on \mathbb{Z}^2 which look like

There are two kinds of squares: ones with red dots and ones without red dots which float in a sea of blanks.

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift,

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probabilility of a big square with red dots and the probability of a square of the same size without red dots.

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots. It does not have the generalised pivot property

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots. It does not have the generalised pivot property

Theorem (Chandgotia and Meyerovitch '13) There exists a shift-invariant MRF supported on the square island shift which is not Gibbs for any shift-invariant finite-range interaction.

There are infinitely many independent parameters required to describe a specification of a shift-invariant MRF on the square island shift, for instance, the ratios of the probability of a big square with red dots and the probability of a square of the same size without red dots. It does not have the generalised pivot property

Theorem (Chandgotia and Meyerovitch '13) There exists a shift-invariant MRF supported on the square island shift which is not Gibbs for any shift-invariant finite-range interaction.

Is there a more natural example?

There is a graph \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

There is a graph \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

Question: Is there a shift-invariant Markov random field which is supported on $Hom(\mathbb{Z}^2, \mathcal{H})$ which is not Gibbs for some shift-invariant finite range interaction?

There is a graph \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

Question: Is there a shift-invariant Markov random field which is supported on $Hom(\mathbb{Z}^2, \mathcal{H})$ which is not Gibbs for some shift-invariant finite range interaction?

Question: Can you classify graphs \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property?

There is a graph \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.

Question: Is there a shift-invariant Markov random field which is supported on $Hom(\mathbb{Z}^2, \mathcal{H})$ which is not Gibbs for some shift-invariant finite range interaction?

Question: Can you classify graphs \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property?

Question: If $Hom(\mathbb{Z}^2, \mathcal{H})$ has the generalised pivot property, can you determine the minimum number of parameters required to determine the specification of a Markov random field?

Thank You!