The Pivot Property for $Hom(\mathbb{Z}^d, \mathcal{H})$

Nishant Chandgotia

Tel Aviv University

June, 2016

Outline

- Homomorphism Spaces
- Pivot Property
- Dismantlable Graphs
- Complete Graphs
- Four-cycle Free Graphs and the Universal Cover
- Generalised Pivot Property

 $\bullet~\mathcal{H}$ is a finite undirected graph without multiple edges.

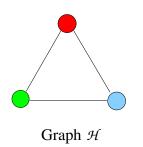
- $\bullet~\mathcal{H}$ is a finite undirected graph without multiple edges.
- Hom(Z^d, H) is the space of all graph homomorphisms from Z^d to H.

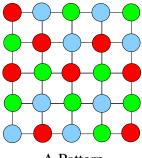
- $\bullet~\mathcal{H}$ is a finite undirected graph without multiple edges.
- Hom(Z^d, H) is the space of all graph homomorphisms from Z^d to H.

Examples: (The 3-coloured chessboard)

- $\bullet~\mathcal{H}$ is a finite undirected graph without multiple edges.
- Hom(Z^d, H) is the space of all graph homomorphisms from Z^d to H.

Examples: (The 3-coloured chessboard)



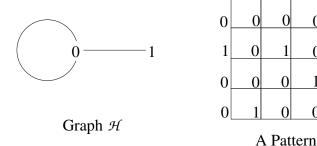


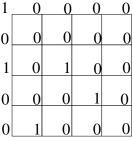
- $\bullet~\mathcal{H}$ is a finite undirected graph without multiple edges.
- Hom(Z^d, H) is the space of all graph homomorphisms from Z^d to H.

Examples: (Hard square model)

- \mathcal{H} is a finite undirected graph without multiple edges.
- $Hom(\mathbb{Z}^d, \mathcal{H})$ is the space of all graph homomorphisms from \mathbb{Z}^d to \mathcal{H}

Examples: (Hard square model)





The pivot property

The pivot property

A pair of homomorphisms x¹, x² in Hom(ℤ^d, ℋ) is called a pivot if x¹, x² differ at a single site.

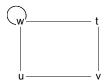
The pivot property

- A pair of homomorphisms x¹, x² in Hom(ℤ^d, ℋ) is called a pivot if x¹, x² differ at a single site.
- Hom(Z^d, H) is said to have the pivot property if for all x, y ∈ Hom(Z^d, H) which differ at most on finitely many sites, there exists a sequence of pivots starting from x and ending at y.

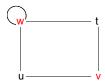
Question:

When does $Hom(\mathbb{Z}^d, \mathcal{H})$ have the pivot property?

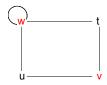
• $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .



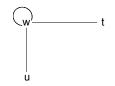
- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.



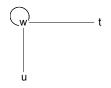
- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.
- Then any appearance of v in x ∈ Hom(Z^d, H) can be replaced by w.



- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.
- Then any appearance of v in x ∈ Hom(Z^d, H) can be replaced by w.
- We say that \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$.



- $u \sim_{\mathcal{H}} v$ denotes (u, v) is an edge in \mathcal{H} .
- v folds to w if $u \sim_{\mathcal{H}} v$ implies $u \sim_{\mathcal{H}} w$.
- Then any appearance of v in x ∈ Hom(Z^d, H) can be replaced by w.
- We say that \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$.



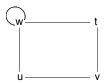
Theorem (Brightwell and Winkler '00)

If \mathcal{H} folds into $\mathcal{H} \setminus \{v\}$ then $Hom(\mathbb{Z}^d, \mathcal{H})$ has the pivot property if and only if $Hom(\mathbb{Z}^d, \mathcal{H} \setminus \{v\})$ has the pivot property as well.

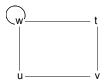
 If H' is a single vertex with a self-loop or an edge then Hom(Z^d, H') has the pivot property.

 If H' is a single vertex with a self-loop or an edge then Hom(Z^d, H') has the pivot property.

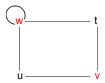
- If H' is a single vertex with a self-loop or an edge then Hom(Z^d, H') has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.



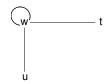
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.



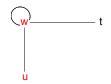
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.



- If H' is a single vertex with a self-loop or an edge then Hom(Z^d, H') has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.



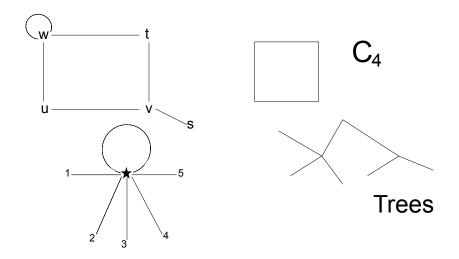
- If H' is a single vertex with a self-loop or an edge then Hom(Z^d, H') has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.



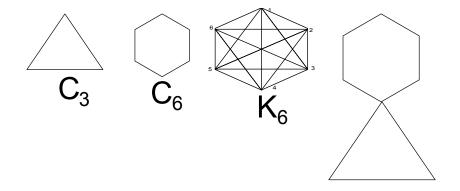
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.

- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.

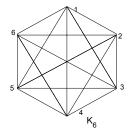
- If \mathcal{H}' is a single vertex with a self-loop or an edge then $Hom(\mathbb{Z}^d, \mathcal{H}')$ has the pivot property.
- By the previous theorem if there is a sequence of folds from H to either H' mentioned above then Hom(Z^d, H) has the pivot property.
- If \mathcal{H} folds to a single vertex with a self-loop or an edge then \mathcal{H} is called bipartite-dismantlable.



Examples: Not Bipartite-Dismantlable Graphs \mathcal{H} for which $Hom(\mathbb{Z}^2, \mathcal{H})$ has the pivot property

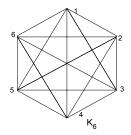


There are graphs \mathcal{H} where no folding is possible but $Hom(\mathbb{Z}^d, \mathcal{H})$ still has the pivot property: Take $\mathcal{H} = K_6$ and $x \in Hom(\mathbb{Z}^2, K_6)$.



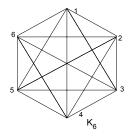
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
x								

• The symbol at every site can be switched to a different admissible symbol.



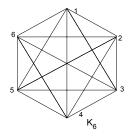
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
x								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



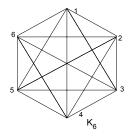
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
X								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



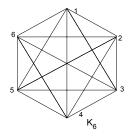
1	4	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
X								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



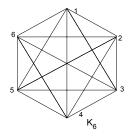
1	4	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
X								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



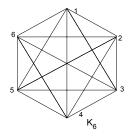
1	4	5	4	3	2	1	6	
2	1	2	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
X								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



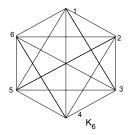
1	4	5	4	3	2	1	6	
2	1	2	5	4	3	2	1	
3	2	1	6	5	4	3	2	
4	3	2	1	6	5	4	3	
5	4	3	2	1	6	5	4	
6	5	4	3	2	1	6	5	
1	6	5	4	3	2	1	6	
2	1	6	5	4	3	2	1	
X								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.



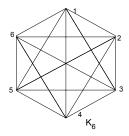
1	4	5	4	3	2	1	2	
2	1	2	5	4	3	2	1	
3	2	1	2	5	4	3	2	
4	3	2	1	2	5	4	3	
5	4	3	2	1	2	5	4	
2	5	4	3	2	1	2	5	
1	2	5	4	3	2	1	2	
2	1	2	5	4	3	2	1	
X								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



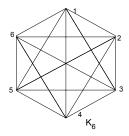
1	4	5	4	3	2	1	2
2	1	2	5	4	3	2	1
3	2	1	2	5	4	3	2
4	3	2	1	2	5	4	3
5	4	3	2	1	2	5	4
2	5	4	3	2	1	2	5
1	2	5	4	3	2	1	2
2	1	2	5	4	3	2	1
	-		-	х	-		

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



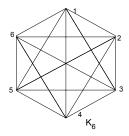
		_	_		_		_
6	4	6	4	6	2	6	2
2	6	2	6	4	6	2	6
6	2	6	2	6	4	6	2
4	6	2	6	2	6	4	6
6	4	6	2	6	2	6	4
2	6	4	6	2	6	2	6
6	2	6	4	6	2	6	2
2	6	2	6	4	6	2	6
	-		-	Х	-		

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



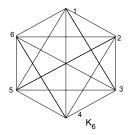
_	_	_		-	_		_		
6	4	6	4	6	2	6	2		
2	6	2	6	4	6	2	6		
6	2	6	2	6	4	6	2		
4	6	2	6	2	6	4	6		
6	4	6	2	6	2	6	4		
2	6	4	6	2	6	2	6		
6	2	6	4	6	2	6	2		
2	6	2	6	4	6	2	6		
	×								

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



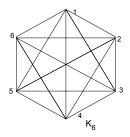
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
				х			

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.



6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
				Х		-	-

- The symbol at every site can be switched to a different admissible symbol.
- Replace every appearance of 6 by some other admissible symbol one site at a time.
- Now place 6 at every even position and finally 1 at every odd position to get a checkerboard pattern in 1's and 6's.
- We can do this for any configuration x ∈ Hom(Z², K₆). Thus it has the pivot property.



_		_					
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
6	1	6	1	6	1	6	1
1	6	1	6	1	6	1	6
				Х		-	

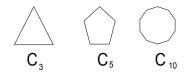
This can be further generalised to prove

Theorem (Well known)

 $Hom(\mathbb{Z}^d, K_r)$ has the pivot property for all $r \geq 2d + 2$.

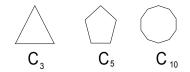
n-cycles

• C_n denotes the *n*-cycle with vertices $0, 1, 2, \ldots, n-1$.



• C_n denotes the *n*-cycle with vertices $0, 1, 2, \ldots, n-1$.

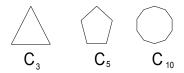
Theorem (Chandgotia, Meyerovitch '13) Hom(\mathbb{Z}^d , C_n) has the pivot property for all $n \neq 4$.



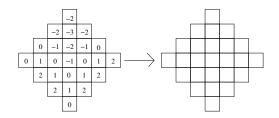
• C_n denotes the *n*-cycle with vertices $0, 1, 2, \ldots, n-1$.

Theorem (Chandgotia, Meyerovitch '13) Hom(\mathbb{Z}^d , C_n) has the pivot property for all $n \neq 4$.

The result was well known for n = 3 and this was quite a simple generalisation.

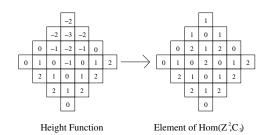


• A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.

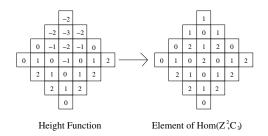


Height Function

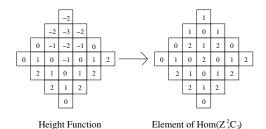
- A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.
- If h is a height function then h mod 3 is an element of Hom(Z^d, C₃).



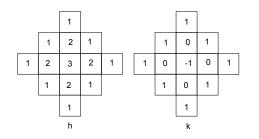
- A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.
- If h is a height function then h mod 3 is an element of $Hom(\mathbb{Z}^d, C_3)$.
- Conversely given an element of Hom(Z^d, C₃) there is a unique element (up to additive constants) of Hom(Z^d, Z) corresponding to it.



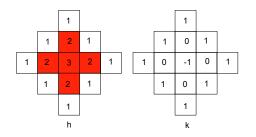
- A height function is an element of $Hom(\mathbb{Z}^d, \mathbb{Z})$.
- If h is a height function then h mod 3 is an element of $Hom(\mathbb{Z}^d, C_3)$.
- Conversely given an element of Hom(Z^d, C₃) there is a unique element (up to additive constants) of Hom(Z^d, Z) corresponding to it.
- It is sufficient to prove the pivot property for $Hom(\mathbb{Z}^d,\mathbb{Z})$.



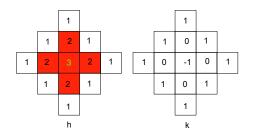
Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.



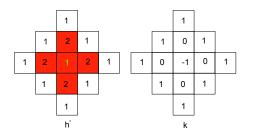
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.



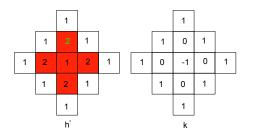
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.



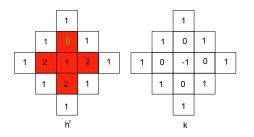
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



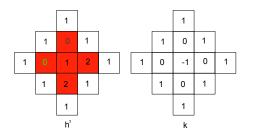
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



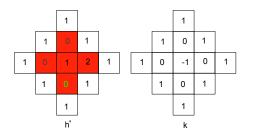
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



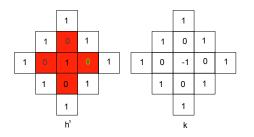
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



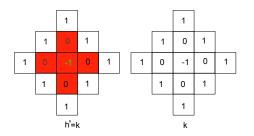
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



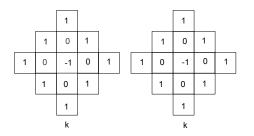
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



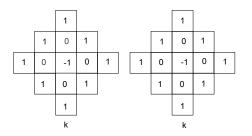
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



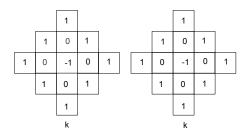
- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.



- Let F be the set of sites where h, k ∈ Hom(Z^d, Z) differ.
 Suppose F is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.
- Proceed similarly with $k|_{F \setminus F_0}$.



- Let *F* be the set of sites where $h, k \in Hom(\mathbb{Z}^d, \mathbb{Z})$ differ. Suppose *F* is finite.
- Let F₀ ⊂ F be the set of sites i where h_i > k_i. Choose a site in i₀ ∈ F₀ which achieves the maximum for h|_{F0}.
- Decrease the height of h at \vec{i}_0 . Iterate.
- Proceed similarly with $k|_{F \setminus F_0}$.
- $Hom(\mathbb{Z}^d,\mathbb{Z})$ has the pivot property.

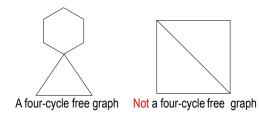


Four-cycle free graphs

If C_4 is not a subgraph of \mathcal{H} and it has no self-loops then \mathcal{H} is called four-cycle free.

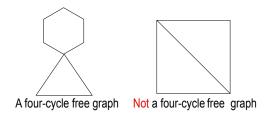
Four-cycle free graphs

If C_4 is not a subgraph of \mathcal{H} and it has no self-loops then \mathcal{H} is called four-cycle free.



Four-cycle free graphs

If C_4 is not a subgraph of \mathcal{H} and it has no self-loops then \mathcal{H} is called four-cycle free.



What generalises height functions for four-cycle free graphs?

 $\bullet~$ Let ${\mathcal H}$ be a graph without self-loops.

- $\bullet~$ Let ${\mathcal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.

- $\bullet\,$ Let ${\mathcal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.

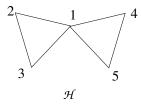
- Let \mathcal{H} be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.
- Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u.

Universal Covers

- Let ${\mathcal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.
- Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u.
- Two such walks are adjacent if one extends the other by a single step.

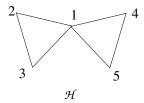
Universal Covers

- Let ${\mathcal H}$ be a graph without self-loops.
- A non-backtracking walk on \mathcal{H} is a sequence of vertices $v_1, v_2, \ldots v_n \in \mathcal{H}$ such that $v_i \sim_{\mathcal{H}} v_{i+1}$ but $v_{i-1} \neq v_{i+1}$.
- Choose a vertex $u \in \mathcal{H}$.
- Denoted by $E_{\mathcal{H}}$, the universal cover of \mathcal{H} is a tree where the vertex set is the set of all non-backtracking walks on \mathcal{H} starting with u.
- Two such walks are adjacent if one extends the other by a single step.
- The universal cover of C_3 is \mathbb{Z} (segments of the walks 0, 1, 2, 0, 1, 2, ... and 0, 2, 1, 0, 2, 1, ...).



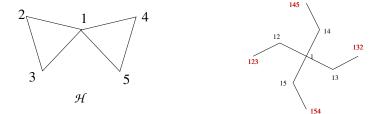
A Part of $E_{\mathcal{H}}$

+ 1



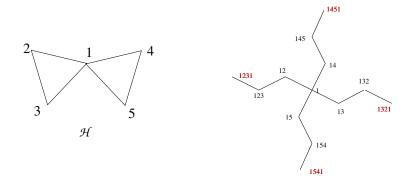
è

A Part of $E_{\mathcal{H}}$



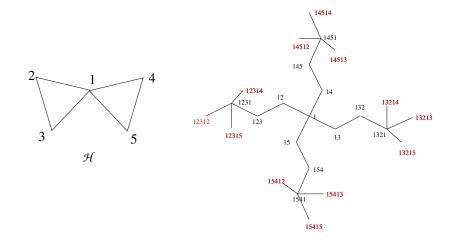
A Part of $E_{\mathcal{H}}$

~



A Part of $E_{\mathcal{H}}$

ı.



A Part of $E_{\mathcal{H}}$

Four-cycle free graphs

This can be used to prove

Theorem (Chandgotia '14)

If ${\mathcal H}$ is a four-cycle free graph then $\text{Hom}({\mathbb Z}^d,{\mathcal H})$ has the pivot property.

Are there homomorphism spaces which do not have the pivot property?

The generalised pivot property

 $Hom(\mathbb{Z}^2, K_5)$ does not have the pivot property.

The generalised pivot property

 $Hom(\mathbb{Z}^2, K_5)$ does not have the pivot property.

1	2	3	4	5
3	4	5	1	2
5	1	2	3	4
2	3	4	5	1
4	5	1	2	3

The symbols in the box can be interchanged; but no individual symbol can be changed.

The generalised pivot property

 $Hom(\mathbb{Z}^2, K_5)$ does not have the pivot property.

1	2	3	4	5
3	4	5	1	2
5	1	2	3	4
2	3	4	5	1
4	5	1	2	3

The symbols in the box can be interchanged; but no individual symbol can be changed. But it satisfies a more general property:

 $Hom(\mathbb{Z}^d, \mathcal{H})$ has the generalised pivot property if there exists $P \subset \mathbb{Z}^d$ finite such that for all $x, y \in Hom(\mathbb{Z}^d, \mathcal{H})$ which differ at finitely many sites there exists a sequence $x = x^1, x^2, \ldots, x^n = y \in Hom(\mathbb{Z}^d, \mathcal{H})$ such that x^i, x^{i+1} differ only on some translate of P.

• Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

Х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

y

• Let $x, y \in Hom(\mathbb{Z}^2, K_5)$ differ exactly on $F \subset \mathbb{Z}^2$ where F is finite.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

Х

	1	2	3	4	5
	2	4	5	3	1
	5	1	2	5	2
	4	5	3	4	3
:	3	2	1	5	4

- Let x, y ∈ Hom(Z², K₅) differ exactly on F ⊂ Z² where F is finite.
- Choose the southwest-most site i ∈ F. We want to change x_i to y_i.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

Х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Let x, y ∈ Hom(Z², K₅) differ exactly on F ⊂ Z² where F is finite.
- Choose the southwest-most site i ∈ F. We want to change x_i to y_i.
- Remove $x_{\vec{i}}, x_{\vec{i}+\vec{e}_1}, x_{\vec{i}+\vec{e}_2}$.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	3	5	1	3
3	2	1	5	4

Х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Let x, y ∈ Hom(Z², K₅) differ exactly on F ⊂ Z² where F is finite.
- Choose the southwest-most site i ∈ F. We want to change x_i to y_i.
- Remove $x_{\vec{i}}, x_{\vec{i}+\vec{e}_1}, x_{\vec{i}+\vec{e}_2}$.

1	2	3	4	5
2	3	1	2	1
5		3	4	2
4			1	3
3	2	1	5	4

Х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

• Place $y_{\vec{i}}$ at the \vec{i} site.

1	2	3	4	5
2	3	1	2	1
5		3	4	2
4	5		1	3
3	2	1	5	4

Х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

y

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.

1	2	3	4	5
2	3	1	2	1
5		3	4	2
4	5		1	3
3	2	1	5	4

Х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.

1	2	3	4	5		
2	3	1	2	1		
5	1	3	4	2		
4	5	2	1	3		
3	2	1	5	4		
x ¹						

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

ν

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

1	2	3	4	5
2	3	1	2	1
5	1	3	4	2
4	5	2	1	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

1	2	3	4	5
2	3	1	2	1
5	1	2	4	2
4	5	3	1	3
3	2	1	5	4
				·

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

2 3 1 2 1 5 1 2 4 2 4 5 3 1 3 3 2 1 5 4	1	2	3	4	5
4 5 3 1 3	2	3	1	2	1
	5	1	2	4	2
3 2 1 5 4	4	5	3	1	3
	3	2	1	5	4

х

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

1	2	3	4	5	
2	3	1	2	1	
5	1	2	5	2	
4	5	3	4	3	
3	2	1	5	4	

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

1	2	3	4	5
2	4	5	2	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4
× ⁵ -v				

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

- Place $y_{\vec{i}}$ at the \vec{i} site.
- The sites $\vec{i} + \vec{e}_1$ and $\vec{i} + \vec{e}_2$ are surrounded by four colours.
- We can always fill them in with a colour to get a valid configuration in $Hom(\mathbb{Z}^2, K_5)$.
- Iterate. This proves that Hom(Z², K₅) has the generalised pivot property for the shape P = { 0, e₁, e₂ }.

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4
5				

1	2	3	4	5
2	4	5	3	1
5	1	2	5	2
4	5	3	4	3
3	2	1	5	4

Single-site Fillability

 Hom(Z^d, H) is single-site fillable if for v₁, v₂, ..., v_{2d} ∈ H there exists v ∈ H such that v_i ~_H v for all 1 ≤ i ≤ 2d.

Single-site Fillability

 Hom(Z^d, H) is single-site fillable if for v₁, v₂, ..., v_{2d} ∈ H there exists v ∈ H such that v_i ~_H v for all 1 ≤ i ≤ 2d.

Theorem (Briceño '14)

If $Hom(\mathbb{Z}^d, \mathcal{H})$ is single-site fillable then it has the generalised pivot property.

 $\mathit{Hom}(\mathbb{Z}^d,\mathcal{H})$ has the pivot property if:

 $Hom(\mathbb{Z}^d, \mathcal{H})$ has the pivot property if:

• \mathcal{H} is bipartite-dismantlable. (Brightwell and Winkler '00)

 $Hom(\mathbb{Z}^d, \mathcal{H})$ has the pivot property if:

- \mathcal{H} is bipartite-dismantlable. (Brightwell and Winkler '00)
- $\mathcal{H} = K_r$ where K_r is the complete graph on r vertices and $r \ge 2d + 2$. (well-known)

 $Hom(\mathbb{Z}^d, \mathcal{H})$ has the pivot property if:

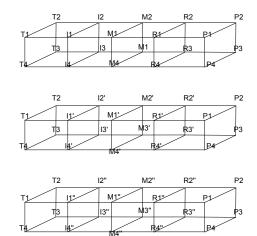
- \mathcal{H} is bipartite-dismantlable. (Brightwell and Winkler '00)
- $\mathcal{H} = K_r$ where K_r is the complete graph on r vertices and $r \ge 2d + 2$. (well-known)
- \mathcal{H} is four-cycle free. (Chandgotia '14)

 $Hom(\mathbb{Z}^d, \mathcal{H})$ has the pivot property if:

- \mathcal{H} is bipartite-dismantlable. (Brightwell and Winkler '00)
- $\mathcal{H} = K_r$ where K_r is the complete graph on r vertices and $r \ge 2d + 2$. (well-known)
- \mathcal{H} is four-cycle free. (Chandgotia '14)
- Hom(Z², K₄), Hom(Z², K₅) do not have the pivot property but have the generalised pivot property (Briceño '14).

Theorem (Austin '16)

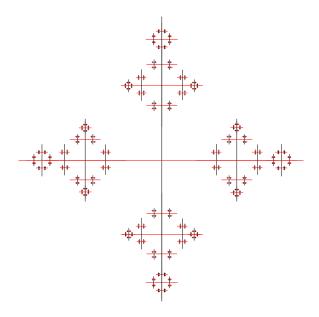
There is a graph \mathcal{H} for which the space $Hom(\mathbb{Z}^2, \mathcal{H})$ does not have the generalised pivot property.



Question: Is the pivot property/generalised pivot property decidable for $Hom(\mathbb{Z}^d, \mathcal{H})$?

Question: Is the pivot property/generalised pivot property decidable for $Hom(\mathbb{Z}^d, \mathcal{H})$?

Question: How do we sample a random graph homomorphism in the absence of the generalised pivot property?



Thank You!