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What are configurations?

In this talk we will focus on probability measures on connected
(infinite) graphs G = (V , E ).

A configuration is an element of x ∈ {0, 1}V , that is, a placing of
0 and 1 on the graph.

We are interested in {i ∈ V : xi = 1}, that is, what can be said
about the vertices of G which are coloured 1?

A cluster is a connected component of {i ∈ V : xi = 1}.

For a ‘random’ x we want to understand whether there is an
infinite cluster.
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What is random?

Upper case X , Y are going to be random variables while lower case
x , y are going to be deterministic.
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Example of randomness: Bernoulli site percolation

A cluster is a connected component of {i ∈ V : xi = 1}.

Fix p ∈ (0, 1).

Now independently colour X (v) as 1 with
probability p and 0 with probability 1− p.

This is the Bernoulli site percolation model. Similar models can be
considered where we colour edges instead of vertices (called bond
percolation) and so on.
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The probability of infinite clusters

A cluster is a connected component of {i ∈ V : xi = 1}.

Fix p ∈ (0, 1). Now independently colour X (v) as 1 with probability p
and 0 with probability 1− p. Consider the event of configurations with at
least one infinite cluster.

Einfinite := {x ∈ {0, 1}V : x has an infinite cluster}.

Note that Einfinite is unaffected by changes on finitely many sites.
Namely, if x ∈ Einfinite and we change values on a finite set W ⊂ V then
the new configuration x ′ is still in Einfinite.

This says that Einfinite is independent of the values on a finite set, that
is, given x ∈ {0, 1}V we have that

Pp(Einfinite , X (v) = x(v) for v ∈ W ) = Pp(Einfinite)

Pp(X (v) = x(v) for v ∈ W ).
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The probability of infinite clusters

We had that for finite W ⊂ V and x ∈ {0, 1}V

Pp(Einfinite , X (v) = x(v) for v ∈ W ) = Pp(Einfinite)

Pp(X (v) = x(v) for v ∈ W ).

But (X (v) = x(v) for v ∈ W ) can approximate any measurable set in
{0, 1}V . Thus for all measurable sets E ⊂ {0, 1}V we get that

Pp(Einfinite ∩ E ) = Pp(Einfinite)Pp(E ).

But then we get

Pp(Einfinite) = Pp(Einfinite ∩ Einfinite) = (Pp(Einfinite))
2

meaning that Pp(Einfinite) = 0 or 1.
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Kolmogorov 0− 1 law

A similar argument can be made for any such event which does not
change when we change the configuration on finitely many vertices.

{x ∈ {0, 1}V : x has exactly 2 infinite clusters}
is not such an event. Local modifcation can change whether or not a
configuration is in the set. On the other hand

Einfinitely infinite := {x ∈ {0, 1}V : x has infinitely many infinite clusters}

is such an event.

By similar arguments as above we have that

Pp(Einfinitely infinite)

is 0 or 1.
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Critical probability

It is intuitively clear that if we increase p then Pp(Einfinite)
increases.

But it takes values only 0 or 1. So there is a critical pc

such that for p < pc we have that Pp(Einfinite) = 0 and for p > pc

Pp(Einfinite) = 1.

What is the value of pc and what happens at pc is often an
interesting question (which we will ignore for this talk).

The focus of the talk will be on the number of infinite components.

Under some technical assumptions on G (like transitivity) it was
proved by Häggstörm, Peres and Schonmann (1999) that there is a
pu such that for pc < p < pu, µp(Einfinitely infinite) = 1 and for
p > pu, µp(Einfinitely infinite) = 0.
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proved by Häggstörm, Peres and Schonmann (1999) that there is a
pu such that for pc < p < pu, µp(Einfinitely infinite) = 1 and for
p > pu, µp(Einfinitely infinite) = 0.

27 / 89



If we make no assumptions on the graph

Suppose there are two graphs G1 and G2 such that for both of
them there is a unique infinite cluster.

Then there must be v1 ∈ G1 and v2 ∈ G2 which belong to the
infinite cluster with positive probability.

Now connect v1 and v2 by an edge to get a new graph G . Then in
this new graph G , the number of infinite clusters is either 1 or 2,
both with positive probability.

This is because the graph G is not very regular (and also not
particularly interesting).
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From here on by G we will mean the Cayley graph of a group
(which will also denote the group).

In the case Zd we will think of the group with the standard set of
generators. Thus Z2 will mean the usual grid graph.

In general we can work with transitive and quasi-transitive graphs.
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A little bit about the setting

The group G acts on the space of configurations {0, 1}G in a natural
way by shifts, namely, for all g ∈ G , x ∈ {0, 1}G we have

σg : {0, 1}G → {0, 1}G

given by
σg (x)(h) := x(g−1h).

We will be interested in measures µ on {0, 1}G which are ergodic for the
shift action.

Previously we were interested in measures µp where for any finite set

A ⊂ G and x ∈ {0, 1}G we had

µp(x
′ : x ′(g) = x(g) for g ∈ A) = pnumber of 1 in x |A(1−p)number of 0 in x |A .
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Finite energy

Let p ≤ 1/2. An important property of µp is what is called “finite
energy”, namely, given a finite set A ⊂ G , and
φ : {0, 1}G → {0, 1}G if

φ(x) and x have the same values on G \ A

then for all sets of positive measure E ⊂ {0, 1}G we have that

p|A|µp(E ) ≤ µp(φ(E )) ≤ p−|A|µp(E ).

A measure µ is said to have finite energy if there exists c , C > 0
such that

cµ(E ) ≤ µ(φ(E )) ≤ C µ(E ).
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The main result

Theorem (Aizenman, Kesten and Newman, 1987)

Let µ be a shift-invariant measure on {0, 1}Zd
with finite energy.

Then
µ(Einfinitely infinte) = 0.

Before this, little was known beyond Z2 (due to Harris in 1960).

We will present the proof by Burton and Keane from two years
later (also look at Häggström and Jonasson - 2006) which is less
quantitative but at the same time can be generalised easily to
other groups and settings.
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Before diving into the proof let us study the hypothesis a bit.
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Is Zd important?

The proof goes through for amenable groups (I will give a hint
later why). Understanding what happens if Zd is replaced by a
general group G is an important open question.

Question (Benjamini-Schramm 2006)

µp(Einfinitely infinite) = 0 for all p if and only if G is amenable.

For free groups it is intuitively clear that there are infinitely many
infinite clusters whenever there is an infinite cluster (since
disconnecting connected subsets of a tree requires removal of only
one vertex).

The latest progress was made by Hutchcroft (2020) who proved
this for a large class of graphs (specifically transitive graphs whose
automorphism group contains a non-unimodular subgroup).
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What about finite energy?

Finite energy (or some such hypothesis) is very important for
proving the theorem.

Without the finite energy assumption, for every N ∈N∪ {∞}
Burton and Keane (1991) constructed an example with exactly N
infinite clusters almost surely. The construction is a beautiful
substitution scheme.
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Proof
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What do we want to prove?

A measure µ has finite energy if for all φ : {0, 1}Zd → {0, 1}Zd
which changes only finitely many coordinates,

there are constants c, C > 0 such that
cµ(E ) < µ(φ(E )) < C µ(E ).

Theorem (Aizenman, Kesten and Newman, 1987)

Let µ be a shift-invariant measure on {0, 1}Zd
with finite energy. Then

µ(Einfinitely infinte) = 0.

It is enough to prove this for ergodic measures. For n ∈N∪ {∞} ∪ {0} define

En := {x ∈ {0, 1}Zd
: x has exactly n infinite clusters}.

Notice the sets En are disjoint and invariant. Thus there is exactly one
n ∈N∪ {∞} ∪ {0} such that

µ(En) = 1.

We want to show that either µ(E0) = 1 or µ(E1) = 1.
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En := {x ∈ {0, 1}Zd
: x has exactly n infinite clusters}.

Notice the sets En are disjoint and invariant. Thus there is exactly one
n ∈N∪ {∞} ∪ {0} such that

µ(En) = 1.

We want to show that either µ(E0) = 1 or µ(E1) = 1.
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0, 1, ∞
A measure µ has finite energy if for all φ : {0, 1}Zd → {0, 1}Zd

which changes only finitely many coordinates,
there are constants c, C > 0 such that

cµ(E ) < µ(φ(E )) < C µ(E ).

We have µ(Ei ) = 0 or 1 for all i . We want either µ(E0) = 1 or µ(E1) = 1.

Suppose µ(Ei ) = 1 for some i ≥ 2. Now note that

Ei =
⋃

A⊂Z2 is finite

{there are exactly i infinite clusters touching A′ for all A′ ⊃ A}.

Thus we have that there is some finite set A ⊂ Z2 such that

µ({there are exactly i infinite clusters touching A′ for all A′ ⊃ A}) > 0.

But then if φA : {0, 1}Zd → {0, 1}Zd
is a map which turns all the coordinates in A to

be 1 we have by finite energy

µ(E1) ≥ µ(φA{there are exactly i infinite clusters touching A′ for all A′ ⊃ A}) > 0.

Thus we have that either µ(E0), µ(E1) or µ(E∞) is 1. This generalises to all transitive
graphs.
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Estimating µ(E∞): We must have trifurcation points

A measure µ has finite energy if for all φ : {0, 1}Zd → {0, 1}Zd
which changes only finitely many coordinates,

there are constants c, C > 0 such that
cµ(E ) < µ(φ(E )) < C µ(E ).

For the sake of contradiction assume that µ(E∞) = 1.

Let K ⊂ Zd be an infinite connected set. A vertex v ∈ K is called a trifurcation point
if removing v disconnects K into a disjoint union of three infinite clusters.

If for µ almost every x , there are infinitely many infinite clusters then there must be a
large enough box B which intersects at least 3 infinite clusters.

By changing the configuration on B, we can create a trifurcation point in B.

By finite energy, µ almost every x has trifurcation points.

For contradiction, it is enough to prove that there are no trifurcation points. This will
come from the fact that the number of infinite clusters touching a box B is at most
the size of the boundary of B.
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Estimating µ(E∞): There must be outer-trifurcation
points.

A vertex v ∈ K is called a trifurcation point if removing v disconnects K into a disjoint union of three infinite
clusters.

Let K ⊂ Zd be an infinite connected set and A ⊂ K be a finite set of trifurcation
points.

A trifurcation point v ∈ A is called outer if A \ {v} is contained in one of the
three components of K \ {v}.

Pick v1 ∈ A. If v1 is not outer then there must be v2 and v3 in A which belong to
distinct connected components of K \ {v1}.

If v3 is not outer then there are at least two connected components of K \ {v3}: one
contains v1, v2 and another contains some v4 in A.

Continuing in this fashion we get a sequence v1, v2, . . . , vn in A such that
v1, v2, . . . , vn−1 is in one component of K \ {vn}.

This will eventually exhaust A and hence we find an outer trifurcation point.
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Estimating µ(E∞): Removing trifurcation points gives a
lot of connected components

Let K ⊂ Zd be an infinite connected set. A vertex v ∈ K is called a trifurcation point if removing v disconnects K

into a disjoint union of three infinite clusters. Let A ⊂ K be a finite set of trifurcation points. A trifurcation point

v ∈ A is called outer if A \ {v} is contained in one of the three components of K \ {v}.

Claim: If A is a finite set of trifurcation points then K \A has at least |A|+ 2
connected components.

We will proceed by induction on |A|. For |A| = 1 this is true by definition. Let this be
true for |A| = n and let A′ be a set of trifurcation points such that |A′| = n + 1.

Let v ∈ A′ be outer. By the induction hypothesis, K \ (A′ \ {v}) has at least n + 2
connected components. Since v is outer, A′ \ {v} is contained in exactly one
connected component of K \ {v}. Thus removing v gives at least 1 more connected
component. This completes the proof of the claim.
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component. This completes the proof of the claim.
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Proving µ(E∞) = 0

Let K ⊂ Zd be an infinite connected set. If A is a finite set of trifurcation points then K \A has at least |A|+ 2
infinite clusters.

For the sake of contradiction we had assumed that µ(E∞) = 1.

Let B := [−n, n]d be a box in Zd . The number of infinite clusters
of almost every x touching B is at most the boundary of B.

But by the ergodic theorem, a positive proportion of vertices in B
must be trifurcation points. This leads to a contradiction and
completes the proof.
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A quantitative question: By Raphaël Cerf (heard from
Gady Kozma)

Let µ be a ergodic measure on {0, 1}Zd
with finite energy.

It can be proved using Aizenman-Kesten-Newman that the probability
that there is a cluster in [−n, n]d touching the boundary which
disconnects into at least two connected components (each touching the
boundary) when the origin is removed is bounded (up to a constant) by

1√
n

.

From Burton and Keane’s result it can be extracted that the probability
that there is a cluster in [−n, n]d touching the boundary which
disconnects into at least three connected components (each touching the
boundary) when the origin is removed is bounded (up to a constant) by
1
n .

Can this be generalised for more number of connected components?
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Thank you!
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