Markov random fields and the Pivot property

Nishant Chandgotia¹ Tom Meyerovitch²

¹University of British Columbia

²Ben-Gurion University

July 2013

Outline

- Nearest neighbour shifts of finite type
- Topological Markov fields
- Markov random fields and Gibbs measures with nearest neighbour interactions
- Pivot property
- Examples: 3-coloured chessboard and the Square Island shift.

Consider a torus $\mathbb{R}^2/\mathbb{Z}^2$ with the map $[\begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix}].$

 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has two eigenvalues (~ 1.618 and -.618).

We can divide the torus into 3 parts by extending the eigendirections. These are called Markov partitions.

Trajectories of points of the torus under the map $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ can be coded via the partition it visits.

Trajectories of points of the torus under the map $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ can be coded via the partition it visits. This gives us an 'isomorphism' between the torus with the map $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and the set of bi-infinite sequences in red, green and blue where consecutive colours cannot be the same and red cannot be followed by green.

Trajectories of points of the torus under the map $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ can be coded via the partition it visits. This gives us an 'isomorphism' between the torus with the map $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and the set of bi-infinite sequences in red, green and blue where consecutive colours cannot be the same and red cannot be followed by green.

This phenomenon is much more general: Any automorphism of the torus(with no eigenvalues of modulus 1) can be coded in a similar way.

Let \mathcal{A} be a finite alphabet set.

Let \mathcal{A} be a finite alphabet set. A shape F is any finite subset of \mathbb{Z}^d .

Let \mathcal{A} be a finite alphabet set. A shape F is any finite subset of \mathbb{Z}^d . A pattern is a function $f: F \longrightarrow \mathcal{A}$.

Let \mathcal{A} be a finite alphabet set. A shape F is any finite subset of \mathbb{Z}^d . A pattern is a function $f : F \longrightarrow \mathcal{A}$. Given \mathcal{F} , a list of patterns,

Let \mathcal{A} be a finite alphabet set. A shape F is any finite subset of \mathbb{Z}^d . A pattern is a function $f : F \longrightarrow \mathcal{A}$. Given \mathcal{F} , a list of patterns, a shift space $X_{\mathcal{F}}$ is given by

 $X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d} \mid \text{ patterns from } \mathcal{F} \text{ do not occur in } x\}.$

Let \mathcal{A} be a finite alphabet set. A shape F is any finite subset of \mathbb{Z}^d . A pattern is a function $f : F \longrightarrow \mathcal{A}$. Given \mathcal{F} , a list of patterns, a shift space $X_{\mathcal{F}}$ is given by

$$X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d} \mid \text{ patterns from } \mathcal{F} \text{ do not occur in } x\}.$$

A nearest neighbour shift of finite type is a shift space such that \mathcal{F} can be given by patterns on 'edges'.

• The full shift: \mathcal{F} is empty. $X_{\mathcal{F}} = \mathcal{A}^{\mathbb{Z}^d}$.

- The full shift: $\mathcal F$ is empty. $X_{\mathcal F}=\mathcal A^{\mathbb Z^d}.$
- The hard square model: $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}_{i=1}^{d}$.

- The full shift: \mathcal{F} is empty. $X_{\mathcal{F}} = \mathcal{A}^{\mathbb{Z}^d}$.
- The hard square model: $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}_{i=1}^{d}$.
- The n-coloured chessboard: $\mathcal{A} = \{0, 1, 2, ..., n-1\}$ and $\mathcal{F} = \{00, 11, 22, ..., \}_{i=1}^{d}$.

- The full shift: \mathcal{F} is empty. $X_{\mathcal{F}} = \mathcal{A}^{\mathbb{Z}^d}$.
- The hard square model: $\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}_{i=1}^{d}$.
- The n-coloured chessboard: $\mathcal{A} = \{0, 1, 2, ..., n-1\}$ and $\mathcal{F} = \{00, 11, 22, ..., \}_{i=1}^{d}$.

Figure : The 3-coloured chessboard in 2 dimensions

A lot is known about 1 dimensional nearest neighbour shifts of finite type

A lot is known about 1 dimensional nearest neighbour shifts of finite type because they can be recoded as walks on graphs (vertex shifts).

A lot is known about 1 dimensional nearest neighbour shifts of finite type because they can be recoded as walks on graphs (vertex shifts).For instance walks on

A lot is known about 1 dimensional nearest neighbour shifts of finite type because they can be recoded as walks on graphs (vertex shifts).For instance walks on

give us the hard square shift space. ($\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}$).

A lot is known about 1 dimensional nearest neighbour shifts of finite type because they can be recoded as walks on graphs (vertex shifts).For instance walks on

give us the hard square shift space. ($\mathcal{A} = \{0, 1\}$ and $\mathcal{F} = \{11\}$). However in higher dimensions given \mathcal{A} and \mathcal{F} there is no algorithm to decide whether the nearest neighbour shift of finite type is non-empty!!!

A lot is known about 1 dimensional nearest neighbour shifts of finite type because they can be recoded as walks on graphs (vertex shifts).For instance walks on

give us the hard square shift space. $(\mathcal{A} = \{0, 1\} \text{ and } \mathcal{F} = \{11\})$. However in higher dimensions given \mathcal{A} and \mathcal{F} there is no algorithm to decide whether the nearest neighbour shift of finite type is non-empty!!! This is not an issue if the space has a 'safe symbol'. Suppose X is a nearest neighbour shift of finite type on alphabet \mathcal{A} . A symbol $\star \in \mathcal{A}$ is called a safe symbol if it can sit adjacent to any other symbol in \mathcal{A} .

Suppose X is a nearest neighbour shift of finite type on alphabet \mathcal{A} . A symbol $\star \in \mathcal{A}$ is called a safe symbol if it can sit adjacent to any other symbol in \mathcal{A} .

For instance, the hard square model ($\mathcal{A}=\{0,1\}$, $\mathcal{F}=\{11\}$) has a safe symbol viz. 0

Suppose X is a nearest neighbour shift of finite type on alphabet \mathcal{A} . A symbol $\star \in \mathcal{A}$ is called a safe symbol if it can sit adjacent to any other symbol in \mathcal{A} .

For instance, the hard square model ($\mathcal{A} = \{0, 1\}$, $\mathcal{F} = \{11\}$) has a safe symbol viz. 0 but the 3-coloured chessboard ($\mathcal{A} = \{0, 1, 2\}$ and $\mathcal{F} = \{00, 11, 22\}$) does not have any safe symbol.

A topological Markov field is a shift space $X \subset \mathcal{A}^{\mathbb{Z}^d}$ with the 'conditional independence' property: for all finite subsets $F \subset \mathbb{Z}^d$, $x, y \in X$ satisfying x = y on ∂F , $z \in \mathcal{A}^{\mathbb{Z}^d}$ given by (x on F)

$$z = \begin{cases} x \text{ on } F \\ y \text{ on } F^c \end{cases}$$

is also an element of X.

A topological Markov field is a shift space $X \subset \mathcal{A}^{\mathbb{Z}^d}$ with the 'conditional independence' property: for all finite subsets $F \subset \mathbb{Z}^d$, $x, y \in X$ satisfying x = y on ∂F , $z \in \mathcal{A}^{\mathbb{Z}^d}$ given by

$$z = \begin{cases} x \text{ on } F \\ y \text{ on } F^c \end{cases}$$

is also an element of X.

Z

Every nearest neighbour shift of finite type is a topological Markov field.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F , they must agree on F.

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F , they must agree on F. Therefore Y is a topological Markov field.
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F , they must agree on F. Therefore Y is a topological Markov field. There are uncountably many such shift spaces but there are only countably many nearest neighbour shift of finite type!!

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The support of every Markov random field is a topological Markov field.

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathbb{Z}^d$ finite and $b \in \mathcal{A}^{\partial A}$ is called specification for the measure μ .

The measure-theoretic version of this 'conditional independence' is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\mathbf{B}}) = \mu([\mathbf{a}]_{\mathbf{A}} \mid [\mathbf{b}]_{\partial \mathbf{A}}).$$

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathbb{Z}^d$ finite and $b \in \mathcal{A}^{\partial A}$ is called specification for the measure μ . The specification might contain a huge lot of data!!!!

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

The specification of a Gibbs measure with a nearest neighbour interaction has a finite description: all we need is

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in supp(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A,x|_{\partial A}}}$$

where $Z_{A,x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

The specification of a Gibbs measure with a nearest neighbour interaction has a finite description: all we need is the interaction V.

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

This is the property of the specification rather than the actual measure!

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

This is the property of the specification rather than the actual measure!

Question: How can we weaken the hypothesis?

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

• Any shift space with a safe symbol.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \neq 4, 5$.

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists K > 0 such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \neq 4, 5$.
- Domino tilings.

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	2	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	2	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	0	1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1		1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1		1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	0	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1	0	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1		1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1		1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	1	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

1	0	2	0	1	0	1
0	2	0	1	2	1	0
1	0	1	2	1	0	1
0	1	2	0	2	1	2
2	0	1	2	1	2	0
0	2	0	1	0	1	2

Suppose μ is a Markov random field whose support has the pivot property.

Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in supp(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$

Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in supp(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}$$
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in supp(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F \mid [x]_{\partial F})}{\mu([y]_F \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F \mid [x^i]_{\partial F})}{\mu([x^{i+1}]_F \mid [x^i]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} \mid [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} \mid [x^i]_{\partial m_i})}.$$

Therefore the entire specification is determined by finitely many parameters viz.

Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in supp(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_{F} \mid [x]_{\partial F})}{\mu([y]_{F} \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{F} \mid [x^{i}]_{\partial F})}{\mu([x^{i+1}]_{F} \mid [x^{i}]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^{i}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}{\mu([x^{i+1}]_{m_{i}} \mid [x^{i}]_{\partial m_{i}})}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in supp(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F \mid [x]_{\partial F})}{\mu([y]_F \mid [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F \mid [x^i]_{\partial F})}{\mu([x^{i+1}]_F \mid [x^i]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} \mid [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} \mid [x^i]_{\partial m_i})}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

Theorem

Given a shift space with the pivot property the space of specifications on that shift space can be parametrised by finitely many parameters. **Question:** Suppose we are given a nearest neighbour shift of finite type with the pivot property. Is there an algorithm to determine the number of parameters which describes the specification?

Thus a specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ \mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix})}$,

Thus a specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ \mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix})}, v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$

Thus a specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ \mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and

$$\mathbf{v}_3 = \frac{\mu(\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix})}{\mu(\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix})}.$$

Thus a specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then

Thus a specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix})}$. If μ is a Gibbs measure with nearest neighbour interaction V then

$$v_{1} = exp(V(01) + V(10) + V(\frac{0}{1}) + V(\frac{0}{1}))$$

$$-V(21) - V(12) - V(\frac{1}{2}) - V(\frac{1}{2})),$$

$$v_{2} = exp(V(12) + V(21) + V(\frac{1}{2}) + V(\frac{1}{2}))$$

$$-V(02) - V(20) - V(\frac{0}{2}) - V(\frac{0}{2})),$$

$$v_{3} = exp(V(02) + V(20) + V(\frac{0}{2}) + V(\frac{0}{2}))$$

$$-V(01) - V(10) - V(\frac{0}{1}) - V(\frac{1}{0})).$$

Thus μ is Gibbs if and only if $v_1v_2v_3 = 1$.

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard

Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold?

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.

Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin.

Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin. The allowed nearest neighbour configurations are all the nearest neighbour configurations in

Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin. The allowed nearest neighbour configurations are all the nearest neighbour configurations in

There are two kinds of squares: ones with red dots and ones without red dots which float in a sea of blanks.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes(or even bigger regional changes).

There is no way to switch from a big square with red dots to a big square without red dots making single site changes(or even bigger regional changes).

There exists a Markov random field supported on the shift space which is not Gibbs for any finite-range interaction.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes(or even bigger regional changes).

There exists a Markov random field supported on the shift space which is not Gibbs for any finite-range interaction.

Question: Can more uniform mixing conditions help?

Thank You!

•