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Outline

Nearest neighbour shifts of finite type

Topological Markov fields

Markov random fields and Gibbs measures with nearest
neighbour interactions

Pivot property

Examples: 3-coloured chessboard and the Square Island shift.



Consider a torus R2/Z2 with the map [ 1 1
1 0 ].



[ 1 1
1 0 ] has two eigenvalues (∼ 1.618 and −.618).

Vector with eigen value ~  1.618

Vector with eigen value ~ -0.618



We can divide the torus into 3 parts by extending the
eigendirections. These are called Markov partitions.



Trajectories of points of the torus under the map [ 1 1
1 0 ] can be

coded via the partition it visits.

This gives us an ‘isomorphism’
between the torus with the map [ 1 1

1 0 ] and the set of bi-infinite
sequences in red, green and blue where consecutive colours cannot
be the same and red cannot be followed by green.

This phenomenon is much more general: Any automorphism of the
torus(with no eigenvalues of modulus 1) can be coded in a similar
way.
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Nearest Neighbour Shifts of Finite Type

Let A be a finite alphabet set.

A shape F is any finite subset of
Zd . A pattern is a function f : F −→ A. Given F , a list of
patterns, a shift space XF is given by

XF = {x ∈ AZd | patterns from F do not occur in x}.

A nearest neighbour shift of finite type is a shift space such that F
can be given by patterns on ‘edges’.
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Examples:

The full shift: F is empty. XF = AZd
.

The hard square model: A = {0, 1} and F = {11}di=1.
The n-coloured chessboard: A = {0, 1, 2, . . . , n− 1} and
F = {00, 11, 22, . . . , }di=1.
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Figure : The 3-coloured chessboard in 2 dimensions
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1 Dimension vs Higher Dimensions

A lot is known about 1 dimensional nearest neighbour shifts of
finite type

because they can be recoded as walks on graphs (vertex
shifts).For instance walks on

10

give us the hard square shift space. (A = {0, 1} and F = {11}).
However in higher dimensions given A and F there is no algorithm
to decide whether the nearest neighbour shift of finite type is
non-empty!!! This is not an issue if the space has a ‘safe symbol’.
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Suppose X is a nearest neighbour shift of finite type on alphabet
A. A symbol ? ∈ A is called a safe symbol if it can sit adjacent to
any other symbol in A.

For instance, the hard square model (A = {0, 1}, F = {11}) has
a safe symbol viz. 0 but the 3-coloured chessboard (A = {0, 1, 2}
and F = {00, 11, 22}) does not have any safe symbol.
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Topological Markov Fields

A topological Markov field is a shift space X ⊂ AZd
with the

‘conditional independence’ property: for all finite subsets F ⊂ Zd ,
x , y ∈ X satisfying x = y on ∂F , z ∈ AZd

given by

z =

{
x on F

y on F c

is also an element of X .

x y z

F F F

Every nearest neighbour shift of finite type is a topological Markov
field.
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Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov
field.

However not every topological Markov field is a nearest
neighbour shift of finite type.

Consider any one-dimensional shift space X . Make a
two-dimensional shift space Y where the horizontal constraints
come from X and the vertical direction is constant. If x and y
agree on ∂F , they must agree on F . Therefore Y is a topological
Markov field. There are uncountably many such shift spaces but
there are only countably many nearest neighbour shift of finite
type!!
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Markov Random Fields

The measure-theoretic version of this ‘conditional independence’ is
called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure
µ on AZd

with the property that for all finite A,B ⊂ Zd such that
∂A ⊂ B ⊂ Ac and a ∈ AA, b ∈ AB satisfying µ([b]B) > 0

µ([a]A

∣∣∣ [b]B) = µ([a]A

∣∣∣ [b]∂A).
The support of every Markov random field is a topological Markov
field.
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specification might contain a huge lot of data!!!!
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Given a shift space X define a nearest neighbour interaction on X
as a shift-invariant function V : B(X ) −→ R supported on
configurations on edges and vertices.

A Gibbs state with a nearest neighbor interaction V is a Markov
random field µ such that for all x ∈ supp(µ) and A,B ⊂ Zd finite
satisfying ∂A ⊂ B ⊂ Ac

µ([x ]A

∣∣∣ [x ]B) =

∏
C⊂A∪∂A

eV ([x ]C )

ZA,x |∂A

where ZA,x |∂A is the uniquely determined normalising factor so that
µ(X ) = 1, dependent upon A and x |∂A.

The specification of a Gibbs measure with a nearest neighbour
interaction has a finite description: all we need is the interaction V .
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Question: When is a Markov random field Gibbs with some
nearest neighbour interaction?

(Hammersley-Clifford theorem) Every Markov random field whose
support has a safe symbol is Gibbs with some nearest neighbour
interaction.

This is the property of the specification rather than the actual
measure!

Question: How can we weaken the hypothesis?
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Pivot Property

A shift space X is said to satisfy the pivot property if for all
x , y ∈ X which differ only on finitely many sites there exists a
chain x = x1, x2, x3, . . . , xn = y ∈ X such that x i , x i+1 differ on
at most a single site.

A shift space X is said to satisfy the
generalised pivot property if there exists K > 0 such that for all
x , y ∈ X which differ only on finitely many sites there exists a
chain x = x1, x2, x3, . . . , xn = y ∈ X such that x i , x i+1 differ only
on a region of diameter at most K .

Examples:

Any shift space with a safe symbol.

r-coloured checkerboard for r 6= 4, 5.

Domino tilings.
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The 3-coloured Chessboard

The 3-coloured chessboard has the pivot property.
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Suppose µ is a Markov random field whose support has the pivot
property.

Then given x , y ∈ supp(µ) that differ exactly on F there
exists a chain x = x1, x2, . . . , xn = y where x i , x i+1 differ exactly
at a site mi ∈ Z2 and consequently

µ([x ]F | [x ]∂F )
µ([y ]F | [x ]∂F )

=
n−1
∏
i=1

µ([x i ]F | [x i ]∂F )
µ([x i+1]F | [x i ]∂F )

=
n−1
∏
i=1

µ([x i ]mi | [x i ]∂mi
)

µ([x i+1]mi | [x i ]∂mi
)

.

Therefore the entire specification is determined by finitely many

parameters viz.
µ([x ]0∪∂0)
µ([y ]0∪∂0)

for configurations x , y which differ only at

0, the origin.

Theorem

Given a shift space with the pivot property the space of
specifications on that shift space can be parametrised by finitely
many parameters.
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Question: Suppose we are given a nearest neighbour shift of
finite type with the pivot property. Is there an algorithm to
determine the number of parameters which describes the
specification?



Thus a specification supported on the 3-coloured chessboard is

determined the quantities v1 =
µ(

[
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1 0 1
1

]
)

µ(
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1 2 1
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]
)
,

v2 =
µ(

[
2

2 1 2
2

]
)

µ(

[
2

2 0 2
2

]
)

and

v3 =
µ(

[
0

0 2 0
0

]
)

µ(

[
0

0 1 0
0

]
)
. If µ is a Gibbs measure with nearest neighbour

interaction V then

v1 = exp(V (01) + V (10) + V ( 01 ) + V ( 01 )

−V (21)− V (12)− V ( 21 )− V ( 12 )),

v2 = exp(V (12) + V (21) + V ( 21 ) + V ( 12 )

−V (02)− V (20)− V ( 02 )− V ( 20 )),

v3 = exp(V (02) + V (20) + V ( 20 ) + V ( 02 )

−V (01)− V (10)− V ( 01 )− V ( 10 )).

Thus µ is Gibbs if and only if v1v2v3 = 1.
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Therefore the Hammersley-Clifford type conclusion fails for
specifications of the 3-coloured chessboard

but every fully
supported Markov random field corresponds to the parameters
satisfying v1v2v3 = 1.

Thus the Hammersley-Clifford type conclusion holds for fully
supported measures.

What if the pivot property does not hold? Every 1 dimensional
nearest neighbour shift of finite type has the generalised pivot
property.
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Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin.

The
allowed nearest neighbour configurations are all the nearest
neighbour configurations in

�
�
�
�

�
�
�
�

��

�
�
�
�

��

��

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

�
�
�
�

��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

������ ��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

����������
��
��
��

��
��
��
��

����

��
��
��
��

���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

�
�
�
�

��
��
��
��

����

B
B B B B

B

B

B

BBBBB

B

B

B

B
B B

0
B

BBB

B

0

B B B
B

B

B

BB B

B

BB

B

B

B

B

B

BBBBBBB

B

0

.

There are two kinds of squares: ones with red dots and ones
without red dots which float in a sea of blanks.
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.

There are two kinds of squares: ones with red dots and ones
without red dots which float in a sea of blanks.



The Square Island shift does not have the generalised pivot
property.

There is no way to switch from a big square with red dots to a big
square without red dots making single site changes( or even bigger
regional changes).

There exists a Markov random field supported on the shift space
which is not Gibbs for any finite-range interaction.

Question: Can more uniform mixing conditions help?
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Thank You!

.


