The Information about Math 105 Final Exam

1. The final exam for Math 105 will be from 12:00 noon -2:30 p.m on April 24. No calculators, books and notes are allowed.
2. The final exam for Math 105 has 6 questions. Question 1 consists of 14 short-answer questions, which are worth $14 \times 3=42$ marks. Questions $2,3,4,5$ and 6 are longer-answer problems, which are worth 58 marks.
3. The final exam for Math 105 is written according to Math 105 syllabus. Hence, you should know all topics in Math 105 syllabus as posted on the course web page.
4. The final exam for Math 105 DOES NOT have a question asking for the use of the following topics:
(a). Remainder in a Taylor Polynomial in section 9.1.
(b). The binomial Series and Convergence of Taylor Series in section 9.3.
(c). Limits by Taylor Series in section 9.4.
(d). Root test in section 8.5 and interval of convergence in section 9.2.
(e). The midpoint and trapezoidal rules in section 7.6.
5. The following common formulas occuring in high school math courses may be needed. Students need to memorize these formulas.

* The volume formula of a rectangular box: $V=x y z$, where x, y and z are the dimensions of the box.
* The volume formula of a right cylinder: $V=\pi r^{2} h$, where r is the radius of the base, and h is the height of the right cylinder.
* The area formula of a a circle: $A=\pi r^{2}$, where r is the radius of the circle.
* The circumference formula of a circle: $C=2 \pi r$, where r is the radius of the circle.
$*$ The distance d between $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, y_{1}\right): d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
* The Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$, where a and b are the sides of a right triangle, and c is the hypotenuse.
$*$ If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

6. The following formulas will be stated on the exam if they are needed:

- Summation formulas:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

- Trigonometric formulas:

$$
\cos ^{2} x=\frac{1+\cos (2 x)}{2}, \quad \sin ^{2} x=\frac{1-\cos (2 x)}{2}, \quad \sin (2 x)=2 \sin x \cos x
$$

- Simpson's rule:

$$
\begin{gathered}
S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \\
\frac{K(b-a)(\Delta x)^{4}}{180} \geq E_{S}, \quad K \geq\left|f^{(4)}(x)\right| \quad \text { on }[a, b]
\end{gathered}
$$

- Indefinite integrals:

$$
\int \sec x d x=\ln |\sec x+\tan x|+C, \quad \int \frac{d x}{1+x^{2}}=\tan ^{-1}+C=\arctan x+C
$$

- Probability:

If X is a continuous random variable with probability density function $f(x)$ with $-\infty<x<\infty$, then the expected value $\mathbf{E}(X)$ and the variance $\operatorname{Var}(X)$ are given by

$$
\mathbf{E}(X)=\int_{-\infty}^{\infty} x f(x) d x, \quad \operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mathbf{E}(X))^{2} f(x) d x
$$

- Some commonly used Taylor series centered at 0:

$$
\begin{gathered}
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad \text { for }|x|<1 \\
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad \text { for }|x|<\infty \\
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \quad \cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}, \quad \text { for }|x|<\infty \\
\tan ^{-1} x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1}, \quad \text { for } 1 \geq|x|
\end{gathered}
$$

- Two important limits:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

