Math 105 Sample Midterm 1 - Version 2

Attempt 7 of the following questions: Time: 50 minutes

1. Consider the planes

A:
$$2x + 3y - z = 2$$

B:
$$-3x + 2y + 5z = 6$$

C:
$$-6x - 9y + 3z = 7$$

D:
$$3x + 5y + 21z = 0$$

In each of the following statements, circle either P (for parallel), O (for orthogonal), or N (for neither parallel nor orthogonal) to make the statement true.

2. Let
$$h(x,y) = \sqrt{x^2 + y^2 - 6x + 10}$$
.

(b) Find the domain of
$$h$$
.

(c) Find
$$h_{yy}(1, -2)$$
.

3. Let
$$f(x,y) = \ln(x^2 + y^2 - 3)$$
.

(a) Sketch the level curves
$$z_0 = f(x, y)$$
 with $z_0 = 0$, $z_0 = 1$, $z_0 = \ln(6)$.

(b) Where does the graph of
$$f$$
 intersect the x -axis?

4. Suppose f(x,y) has continuous partial derivatives of all orders $f_x(0,0) = f_y(0,0) = 0$.

(a) If $f_{xx}(0,0) \leq 0 \leq f_{yy}(0,0)$ and $f_{xy}(0,0) \neq 0$, is (0,0) a local maximum point, a local minimum point, or a saddle point?

(b) If
$$f_{xy}(0,0) = 5$$
, what is the value of $f_{yx}(0,0)$?

5. Find all critical points of the function f(x,y) = xy(1-x-y). Classify each point as a local maximum, local minimum, or saddle point.

6. Find the absolute maximum and minimum values of $f(x,y) = 2x^3 - 7x^2 + y^4$ on the closed disk $\{(x,y): x^2 + y^2 \le 1\}$.

7. An axis-aligned rectange is a rectangle whose sides are parallel to the coordinate axes. Find the dimensions of the axis-aligned rectangle with maximum area that can be inscribed in the ellipse $x^2 + 4y^2 = 4$. Use Lagrange multipliers to solve this problem. Start by identifying the objective function and the constraint.

8. Compute S1x+31 dx

Use Riemann Sums to compute 3(3x3+x)dx.