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The full shift

Let A be a finite set.

We will give it the discrete topology and consider the product
d .
space AZ® the set of all functions from Z9 to A.

This space is compact. In fact, it is homeomorphic to a Cantor set.
This is called the full shift.

An element of AZ is called a configuration and will usually be
denoted by letters like x, y,.... The values taken by configurations
will be denoted by

x: := x(1).

N
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Intuition for the topology

In this topology, two points x and y are close if they agree on a
large ball around the origin. A natural metric on the space is

d(X,y) = max{2_” : X|{—n n—1,n}d 7£ y|{—n ,,,,, n—l,n}d}'

Given a finite set B C Z9 and a function ¢ : B — A let
[clg = {x € A% : x|g=c}.

Sets of the type [c]|g are called cylinder sets and form the base of
the topology.
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Intuition for the topology

Thus a sequence x/ converges to x € AZ’ if for all n there exists
m such that for all j > m,

In other words, the sequence x/ starts agreeing with x on larger
and larger blocks.
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The shift map

Z9 acts naturally on the space AZ° by homeomorphisms called
shifts: o : Z9 x AZ® — AZ’ given by

U'(I,X)j = X7+j'

We will use the notation o (x) to mean o (7, x).

The pair (AZ°, ) is called a full shift. Since the action remains
the same we will often drop it from the notation.
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Figure : Shift action.
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Figure : Moving left, o(1.0)
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Figure : Moving up, +0,-1)
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Subshifts

A subshift is a closed subset X C AZ’ for some finite set A which
is invariant under the shift action o.

Before getting into examples let me introduce an equivalent
definition for subshifts.

Given a finite set B C Z a pattern on B is a function ¢ : B — A
while a configuration is an element of AZ°. Given a set of
patterns F we define Xr to be the set of configurations which
avoid translates of elements of F.

Xr:= {xeAZ . 07(x)|3 ¢ F forall i € 9
and finite sets B C Z9}.

13/58



Subshifts

Xr:= {xeAZ . 07(x)|3 ¢ F forall i € 9
and finite sets B C Z9}.
Clearly if x € Xr then o (x) € Xz for all 7 € Z¢.
Also if xX) € XF converges to x € AZ’ then since larger and larger
blocks of x eventually agree with x/ we must have that x also

avoids patterns from F and is an element of Xr.

Thus Xz is both shift-invariant and closed; it is a subshift.
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An alternative definition of subshifts

Theorem

X C AZ° s a subshift if and only if there exists a set of patterns
F such that X = Xr.

We have already seen that X are always subshifts. Now consider
a subshift X and let F be the set of all patterns which do not
appear in elements of X. Then X = Xx:

Clearly X C XF since F is precisely the set of patterns which do
not appear in elements of X.

Conversely if x € Xr then large blocks of it do not belong to F
and hence must agree with some element of X. Since X is closed
it follows that x € X.
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Thus subshifts arise as a set of configurations which are obtained
by forbidding patterns.
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Examples: Hard-core shift

Here A = {0,1} and adjacent symbols can't both be one.

1 O 0 0 O
0 O O O o0
1. O 1 0 O
0 0

0
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Examples: k-colorings

Here A = {1,2,3,..., k} and adjacent symbols can't both be the

Ssame.

Figure : A 3-colouring
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Examples: Dimer tilings

These are tilings of Z? by dimers, that is, rectangular
parallelepipeds of which one side is length two and the rest are one.

Why does this fit the frame work of subshifts?
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Examples: Dimer tilings

It can be seen as a shift space by placing symbols on integer
vectors which identify the kind of dimer covering them.

L RIUL R

O Cl00C
OCroc

O CU0C
OCOCOC

ocCcCoC|r
OCirio

L R

The symbols L and R identify the horizontal dimers while the

symbols U and D identify the vertical ones. The forbidden list here
ensures that L must appear to the left of R, U must appear above

D etc. 20/58




Examples: The Even-shift

Fix d = 1. Here A := {0,1}. Here the connected components of
0’s must be even.

... 10010000100000011001 ...

In the previous examples, one could choose a finite forbidden list F
such that X = Xr.

This is not possible for the even shift. For the sake of
contradiction assume that such a finite forbidden list exists. Then
the domain of the patterns in F must be contained in {—n, ..., n}
for some n. But then such a list can’t forbid

. 04n+1 104n+1104n+1 .
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Subshift of finite type

A subshift X is called a subshift of finite type (SFT) if it can be
obtained by forbidding finitely many patterns.

The hard core shift was obtained by forbidding adjacent
appearances of 1s.

k-colorings were obtained by forbidding adjacent appearances of
the same symbol.

Dimer tilings can be obtained by ensuring that each symbol has
exactly one more adjacent symbol which forms a dimer with it.

These are all SFTs.

The even shift is not an SFT.



Motivation

We will be primarily interested in the study of SFTs when d > 1.
We will now discuss the main motivations for studying these
objects:

@ Statistical physics models
@ Questions arising in theoretical computer science

@ As a higher-dimensional analogue of one dimensional SFTs.

Let us discuss these one by one.
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Statistical physics models
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Ising model

In the 1920’s, Ising investigated a simple model which was
supposed to exhibit properties of a magnet. The model is the
following:

2n + 1 atoms would be placed in a line and each one could take a
random spin value x; = 1 or —1. Fix B > 0 (called the inverse
temperature)

n—1
P(X_p, X pt1, - o0 Xn) & H ePxixitt,
i=—n
Under this distribution there is a penalty for x; being different from
Xi+1-
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Ising model

Ising wanted to know whether fixing x_,, and x, significantly
influences xg as n goes to infinity.

Much to Ising's dismay, the spin values on the boundary did not

influence the central spin and he concluded that no such influence
existed in higher dimensions either (as published in his thesis 1924).
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Ising model

However very soon it was discovered by Peierl in 1936 that the two
dimensional analogue of this model did exhibit this influence. In
the model, atoms would be arranged in the square lattice in a box
B and their random spins o= would be distributed as

IP(x; 7 € B) I P,

(7.j)adjacent in the box

For certain values of the parameter B it was discovered that fixing
the spins on the boundary of the box had significant influence on
the spin at the centre even as the box increased to Z9.



Ising model

The precise value at which the model changed its behaviour was
calculated by Onsager in 1944,

Such behaviour can also be captured by SFTs where you have two
finite collection of symbols A and B of equal cardinality and we
make a forbidden list such that transitioning from A to B or vice
versa can be made comparatively harder as compared to staying
among the same set of symbols.

For instance A:={—m,—m+1,...,—1} and B:={1,2,..., m}
and the only constraint is that adjacent symbols must have the
same sign unless they are 1 and —1. This is a famous example
studied by Burton and Steif. We will return to this in the third
lecture.
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2 |3 | -1 2 |- 1 1 -1 2 | -2
-1 -1 2 2 | 1 4 1 -1 2 | -2
5 |2 |6 -1 1 5 3 1 -1 2 | -2
-1 2 | -1 1 3 6 1 -1 2 | -2

1| 1 1 2 5 1 -1 2 2 | -2
2 1 2 2 3 1 -1 2 2 2 | 2
5 6 7 3 4 1 -1 2 |-2 2 | =2
1 1 1 4 5 1 -1 2 -2 -2 -2

-1 -1 A 1 -1 2 |2 |-2 2 | =2
2 |2 2 -1 -1 2 2 |2 |-2 2 | =2
2 |2 2 2 |2 2 2 |2 |-2 2 | =2
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Many such models like the hard-core model and the Potts model
have their analogues in SFTs.

The study of their statistical behaviour is equivalent to studying
the measures of maximal entropy (or more generally equilibrium
states) of the corresponding SFTs.

This has been a very rich interface of work and we will introduce
some of these terms in the second lecture/exercise session and
discuss in the third and the fourth lecture.
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Questions arising in theoretical computer science
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An SFT can be described by its finite forbidden list F but it is not
obvious that using the forbidden list we can always find out the
properties of the corresponding SFT.

Theorem

It is undecidable whether an SFT is non-empty. In other words,
there is no algorithm which will take the finite forbidden list F as
input and tell us whether or not Xr is non-empty.

This was proved by Robert Berger in 1966 answering a question of
his advisor Hao Wang arising from logic.
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There is however an algorithm which will stop if indeed Xr is
empty.

The algorithm will keep trying to build patterns on larger and
larger shapes. If indeed Xz is empty there will be a shape on
which no valid pattern avoiding the forbidden list.

However if Xz is non-empty then we need to check this for all
(and infinitely many) shapes that there is a valid patten on the
shape avoiding it.
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In specific cases it might be easy to check: For instance if we
manage to build a periodic pattern.

Figure : Once we have the pattern in the red square we can tile the
entire plane with it

One can use this to build an algorithm to check whether a given
SFT is non-empty in one dimension since they always have periodic
points (exercise).
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But there are SFTs in higher dimensions which have no periodic
pattern.

Figure : This picture is from a beautiful construction by Robinson (1972)
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Let us look at another very important aspect.
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Topological entropy

If we know that the subshift is non-empty then we can try and
measure the growth rate of the number of allowed patterns. This
gives rise to the most important invariant attached to subshifts
called the topological entropy. Let B, := {1,2,..., n}d.

Given a subshift X and B € Z9 let
L(X,B):={x|g : x€ X}.

The topological entropy of X is given by

hiop(X) := lim |0g(\C(X Bn)l).
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Topological entropy can be defined in a more general fashion for
actions by homeomorphisms of the group Z¢ (in fact amenable
groups) on compact metric spaces using open covers but we do
not need this generality in this series.
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Topological entropy

L(X,B,):={x|g, : x € X}.
hrop(X) 1= limy e ‘Bln‘ (|L£(X, Bn)]).

Clearly if a € L(X, Bky)) then al;, 5 € L(X, 7+ B,) for all 7.
The set By, can be tiled by k9 copies of B,. Hence

IL(X, Bia)| < |L£(X, Ba)[¥.

Using this and subadditivity arguments one can prove that the
limit in hyop exists and is equal to

inf 157 1oB(1£(X, By)).
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Given a finite set F can we find hyop(Xr)?
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Given a finite set F can we find hyop(Xr)?

Depends on what we mean by find.
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Topological entropy

Theorem (Lind (1984))

The set of entropies of SFTs when d = 1 are precisely the
logarithm of the Perron numbers, that is, logx where « is an
algebraic integer strictly greater than the modulus of its Galois
conjugates.
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Topological entropy

Theorem (Lind (1984))

The set of entropies of SFTs when d = 1 are precisely the
logarithm of the Perron numbers, that is, logx where « is an
algebraic integer strictly greater than the modulus of its Galois
conjugates.

The situation is drastically different in higher dimensions.

Theorem (Hochman and Meyerovitch (2010))

The set of entropies of SFTs when d > 2 are precisely the
non-negative right recursively enumerable numbers, that is,
numbers for which there exists algorithms approximating it from
above.
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Thus when d > 2, in general, given any algorithm which tries to
approximate the entropy will fail to say how close it is to the actual
value. This and many further results linked theoretical computer
science with the study of SFTs.
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As an analogue of one dimensional SFTs
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The suggestion here is that one dimensional SFTs are much better
behaved and we try to prove in higher dimensions results analogous
to those in one dimension.
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One dimensional SFTs

The study of one dimensional SFTs started with applications in
data recording and as means of encoding complicated dynamics in
a more combinatorial way. One of the first examples of the latter
was due to Adler and Weiss (1970).

Consider the automorphism of the torus
(13):R?/2Z% — R?/Z2. The torus can be partitioned into three
parts, Red, Blue and Green such that the following holds:
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Encoding of a toral automorphism

The torus can be partitioned into three parts, Red, Blue and Green
such that the following holds:

Given each point x € R?/Z? we get a sequence of partitions
visited by (13)' (x) as i varies over Z.

This map from points of the torus to sequences in Red, Blue and
Green is essentially injective.
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One dimensional SFTs

It gives rise to sequences that follow the constraints given by the
edges absent in the following graph

Red /%’
I/\_G/

reen

49 /58



Such encodings are extremely useful and an important area of
study where nowadays the alphabet considered is often countably
infinite.
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Sofic shifts

We leave the discussion with some important open questions of the
field which intrigue me but we will not get to discuss.

A subshift Y is a factor of a subshift X if there exists a continuous
surjective map ¢ : X — Y which commutes with the shift map,
that is, ~ .

oo ¢p=¢o o

The factors of SFTs are called sofic shifts.
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Even shifts are sofic

Sequences arising by

Red Blu

<

Green

S

gives us the even shift proving that it is sofic. One can check that
they have the same entropy.

gives us an SFT while



Sofic shifts conjecture

It is not difficult to see that if Y is a factor of X then
heop(Y) < heop(X). (exercise)

Question (Benjamin Weiss)

Is every sofic shift Y a factor of an SFT X with the same entropy?

Here are some partial results.
@ Yes when d = 1. (Coven and Paul 1975)

@ For d > 1, for all € > 0 there exists a sofic shift X such that
heop(X) < heop(Y) — €. (Desai 2006)

@ The set of entropies for sofic shifts is the same as the set of
entropies for SFTs. (Hochman and Meyerovitch 2010)
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Nivat's conjecture

Fix d = 2. Let X be a subshift such that for some n,m € IN
|IL(X,{1,2,...,n} x{1,2,...,m})| < nm.
Prove all configurations in X are periodic.

For d =1 it is a famous result by Morse and Hedlund.

Recently, Kari and Moutout (2019) proved that X must contain a
periodic configuration.
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Periodic Tiling conjecture

Let X(F) be the set of tilings of Z4 by a finite set F C Z9. Prove
that if X(F) is non-empty then X (F) must contain periodic points.

For d =1 this follows from ideas by Morse and Hedlund.

For d = 2 this was resolved recently by Bhattacharya (2016). This
is wide open in higher dimensions.
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References

@ For the Ising model in two dimensions you can look at Chapter
6 of “Gibbs Measures and Phase Transitions” by Georgii.

@ The paper by Burton and Steif paper referred to is
“Non-uniqueness of measures of maximal entropy for subshifts
of finite type”.

@ For a good introduction to the undecidability of tiling problem
look at “Undecidability and Nonperiodicity for Tilings of the
Plane” by Robinson.

@ The paper by Lind being referred to is “The entropies of
topological Markov shifts and a related class of algebraic
integers.”

® The paper by Hochman and Meyerovitch referred to is “A
Characterization of the Entropies of Multidimensional Shifts
of Finite Type".
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References

@ The construction by Adler and Weiss can be found in
“Similarity of automorphisms of the torus.” (1970)

@ Coven and Paul's paper is titled “Sofic systems”

@ The paper by Desai is titled “Subsystem entropy for Z sofic
shifts.”

@ Kari and Moutout’s paper being referred to is titled
“Decidability and Periodicity of Low Complexity Tilings”.
Also look at the paper by Kari titled “Low-Complexity Tilings
of the Plane”

® Bhattacharya's paper is titled “Periodicity and decidability of
tilings of Z2"
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