
LECTURE 2 - SOME ASPECTS OF ENTROPY VIA EXERCISES

NISHANT CHANDGOTIA

1. Some simple computations

It is not possible to give a comprehensive introduction to entropy in a period of forty five minutes.

We will give a very specialised introduction for our purposes by means of certain exercises.

Recall that every shift space X ⊂ AZd
is obtained as the set of configurations avoiding patterns

from a forbidden list F . Bn := {1, 2, . . . , n}d is a box of size n. The language allowed on the shape

Bn is given by

L(X,Bn) := {x|Bn : x ∈ X}.

Then the entropy is defined as

htop(X) := lim
n→∞

1

|Bn|
log(|L(X,Bn)|).

The hard-core shift is the subshift with alphabet {0, 1} where adjacent 1’s are disallowed. The

even shift is the subshift with alphabet {0, 1} where the gap between successive 1’s is even. The

space of proper k-colorings is the subshift with alphabet {0, 1, . . . , k − 1} where adjacent symbols

are forced to be distinct.

For the following question let us remind ourselves of the following consequence of the Perron-

Frobenius theorem.

Theorem 1. [10, Proposition 4.2.1] Let A be an integer matrix with non-negative entries. Then A

has a positive eigen-value λ > 0 such that there exist c, d > 0

cλn ≤ ~1tAn~1 ≤ dλn.

for all n ∈ N.

Question 1. Compute the topological entropy of the hard-core shift. Following the idea in the

previous lecture (Figure 1) show that the even shift is the factor of the hard-core in d = 1. Can you

use this to find the topological entropy of the even shift? (Hint: To find the entropy of the hard-core

shift try to form a recurrence relation for L(X,Bn) where X is the hard-core shift and then use

Theorem 1.) Prove that the entropy of the space of proper k-colorings is log(k − 1).

Looking at this you might have a sense of how algebraic integers turn up in the context of one

dimensional SFTs. For more about this in the case of d = 1 look at [10, Chapter 4]. In general

computation of these constants can be a very difficult task in higher dimensions. In d = 2 the

hard-core shift is one of the few where algorithms are known for approximation within polynomial

time [13]. In the case of 3-colorings the entropy is explicitly known due to Lieb [9] (also look at
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Figure 1. An SFT and the even shift as its factor

[2]). In general approximating or calculating entropy in higher dimensions even for simple seeming

models can be very difficult.

2. Entropy and continuous maps

Recall that a factor map φ : X → Y is a continuous surjective map which is equivariant, meaning,

it commutes with the shift map, that is, σY ◦ φ = φ ◦ σX .

Question 2. Prove that if Y is a factor of X then htop(Y ) ≤ htop(X).

Let me introduce a theorem to you which would help. By expanding the alphabet if necessary

we can assume that X,Y ⊂ AZd
. A sliding block map is a map φ : X → Y with the following

structure:

There exists B ⊂ Zd and a map Φ : L(X,B)→ A such that φ(x)~i := Φ(σ
~i(x)|B).

Theorem 2 (Curtis-Hedlund-Lyndon). [10, Section 1.5] A map φ : X → Y is equivariant and

continuous if and only if φ is a sliding block code.

As a further comment suppose φ : X → Y is injective as well. Since the image of compact sets

is compact it follows that the image of closed sets under φ are closed and hence the image of open

sets are open. Thus φ is invertible and one gets as a corollary that htop(Y ) = htop(X). Such maps

are called a conjugacy.

3. Nearest neighbour SFTs

An SFT X is called a nearest neighour SFT if X = XF for some set of patterns F on the shapes

{~0, ~ei} for 1 ≤ i ≤ d. Clearly the examples that we have discussed until now (hard core shift, space

of proper colourings, dimer tilings) are all nearest neighbour SFTs.

Question 3. Prove that shift spaces conjugate to SFTs are still SFTs and that every SFT is

conjugate to a nearest neighbour SFT. (Hint: Use Curtis-Hedlund-Lyndon theorem)

4. Measure theoretic entropy

For this section let us remind ourselves of Jensen’s inequality.

Theorem 3 (Jensen’s Inequality). Let (Ω, µ,B) be a probability space and f ∈ L1(µ). Then for all

convex functions φ : R→ R,

φ

(∫
Ω
f(ω)dµ(ω)

)
≤
∫

Ω
φ ◦ f(ω)dµ(ω)

where equality occurs if φ is linear on the image of f or f is a constant function.
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The Shannon entropy of probability measure µ on a countable set N is defined as

H(µ) :=
∑
n∈N
−µ(n) log(µ(n))

where 0.log(0) = 0.

Entropy takes value in [0,∞]. Here are some elementary exercises to familiarise yourself with

entropy.

Question 4. (1) H(µ) = 0 if and only if µ is deterministic, that is, µ(x) = 1 for some x ∈ N .

(2) If µ is a probability measure on a finite set N then prove that the entropy is maximised for

the uniform probability measure. (Hint: x→ − log(x) is a convex function)

5. Measures on shift spaces

Given a graph G and a set of vertices B ⊂ G, let

∂B := {v ∈ G \B : v is adjacent to a vertex in B}.

Let µ be a probability measure on AG. By the support of the measure µ we mean the smallest

closed set X ⊂ AG for which µ(X) = 1. In other words

supp(µ) = AG \ (∪?[b]C)

where ? is the set of all cylinder set [b]C := {x ∈ AG : x|C = b} for which µ([b]C) = 0.

A shift-invariant probability measure µ on a shift space X is a probability measure which is left

invariant under the shift action. More concretely,

µ([b]C) := µ(σ
~i([b]C)) for all ~i ∈ Zd.

Clearly supp(µ) is also a shift space since if b is a pattern which does not appear in supp(µ) then

so doesn’t σ
~i(b) for all ~i ∈ Zd.

We will use the notation for a measure µ on X and measurable sets D,E ⊂ X; µ(E) > 0, the

notation µ(D : E) := µ(D ∩ E)/µ(E).

Question 5. Let X be a nearest neighbour SFT. Prove that H(µ) is maximised over all possible

probability measures µ on L(X,Bn) exactly when µ is a uniform Gibbs measure, meaning, that for

all finite sets B ⊂ Bn and a ∈ supp(µ) and b ∈ L(X,Bn),

µ([b]B : [a]Bn\B) = µ([b]B : [a]∂B∩Bn)

and is uniform on b ∈ L(X,B ∪ ∂B) such that b|∂B = a|∂B.

6. Existence of measures of maximal entropy for shift spaces

Given a measure µ on a shift space, we can restrict it to L(X,Bn) in the following natural way,

µBn(a) := µ([a]Bn).

We will need to recall the Banach-Alaoglu theorem.
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Theorem 4 (Banach-Alaoglu theorem). Given a normed space H the unit ball in its dual H∗ is

compact under the weak-star topology.

Given a shift space X, let P(X) denote the space of all shift-invariant probability measures on

X. Under the weak topology P(X) is a compact space (by the Banach-Alaoglu theorem but in our

particular case it is just a diagonalisation argument). The measure-theoretic entropy of µ is given

by

hµ := lim
n→∞

1

|Bn|
H(µBn).

Again by subadditivity it can be proven that the limit exists and that

hµ = inf
1

|Bn|
H(µBn).

Question 6. (1) Prove that µ → hµ is upper-semi continuous and that there is a measure

µ ∈ P(X) which maximises measure-theoretic entropy.

(2) Construct an example to exhibit the fact that µ→ hµ need not always be continuous. (Hint:

Let µ be the iid measure on {0, 1}Z and find a sequence of measures suppported on periodic

points which converge to it.)

7. Some final notes

In general measure-theoretic entropy is not defined in this way. Given a Zd-action on a probability

space (X,µ,B), the measures theoretic entropy (as first formulated by Kolmogorov and Sinai in

1958) is defined as the maximum of the measure theoretic entropy of random fields (measures on

shift spaces) obtained by taking finite measurable partitions of X. That this general definition

coincides with ours is a result of their theorem which says that if the partition generates the sigma-

algebra of the space, then the entropy of the Zd- action is the same as the entropy of the resulting

process. More details can be found in [8, Chapter 3].

An important result that we will need is the following:

Theorem 5 (Variational Principle). For a shift space X we have that

sup
µ∈P(X)

hµ = htop(X).

A beautiful short proof can be found in [11]. Again the general result extends to actions of Zd (and

beyond, to amenable groups) by homeomorphisms on compact metric spaces. We remark though

that in this generality, the measure theoretic entropy is not necessarily upper semi-continuous and

might not attain a maximum.

In the specific case of shift spaces there does exist a simple argument to prove the variational

principle which we outline now:

Let X ⊂ AZd
be a shift space. Divide Zd into translates of Bn and on each translate uniformly

choose a pattern from L(X,Bn). Now translate the measure thus obtained by vectors in Bn to

get a shift-invariant probability measure µn. A simple calculation now shows that hµn → htop(X).
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Upper semi-continuity of the entropy implies that any limit point µ of the measures µn (which

exists because P(X) is compact) has the entropy greater than or equal to htop(X).

Further supp(µ) ⊂ X. We are left to prove that

sup
µ∈P(X)

hµ ≤ htop(X).

This follows from Question 4 which implies that for any µ ∈ P(X) we have that

H(µBn) ≤ log |L(X,Bn)|.

A similar construction can be found in [7, Theorem 3.1] which the reader is now prepared to

follow. That theorem shows another very important result that entropy of an SFT is a right-

recursively enumerable number. This was proved earlier by Friedland [4] but with a slightly more

complicated proof. We already know that the topological entropy of a subshift is the infimum of
1
|Bn| |L(X,Bn)| however it is not possible to give an algorithm to tell whether L(X,Bn) is empty or

not, let alone find out its cardinality. Given a forbidden list F one can however find the cardinality

of Loc(F , Bn) which is the set of pattern on Bn avoiding translates of patterns from F . These are

called locally allowed words. It turns out that for any choice of F giving rise to the same shift space

X we have that

htop(X) = inf
1

|Bn|
log(|Loc(F , Bn)|).

The argument is very similar to above; the only difference is that instead of taking patterns from

L(X,Bn) we now take patterns from Loc(F , Bn).

Finally we have the following very important result that we will need.

Theorem 6. If X is a nearest neighbour SFT then measures of maximal entropy of X are uniform

Gibbs measures.

This is a far-reaching generalisation of Question 5 and a simplified version of the Lanford-Ruelle

theorem. A nice short proof can be found in [1, Proposition 1.19]. The argument is not difficult

given the ideas above. Suppose there is a measure of maximal entropy µ of x which is not a

uniform Gibbs measure. Then there must exists a finite set B ⊂ Zd and a ∈ L(X, ∂B) such that

µ([a]∂B) > 0 and

µ([·]B : [a]∂B)

is not uniform on c ∈ L(X,B ∪ ∂B) where c|∂B = a. Now choose n large enough such that

B ⊂ {−n, . . . , n − 1, n}d and divide Zd into translates of {−n, . . . , n − 1, n}d getting a partition

~i + {−n, . . . , n − 1, n}d;~i ∈ I. Take a sample x from the measure µ. For each such x, resample

x|~i+B for ~i ∈ I if x|∂(~i+B) = σ
~i(a) giving us a measure µn. Although µn is not shift-invariant you

can average it out so as to make it shift-invariant. By Question 5 and prudent use of the ergodic

theorem it is not hard to prove that the resulting measure has higher entropy. Thus for the full

shift {0, 1}Zd
, and x, y ∈ {0, 1}Zd

and A ⊂ Zd a finite set we have

µ([x]A | [y]Zd\A) =
1

2|A|
.
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This is the same as choosing either 0 or 1 at each site in Zd independently and with equal probability.

The converse holds in very specific situations and is easier to prove.

Question 7. Prove that shift-invariant uniform Gibbs measures are measures of maximal entropy

for the hard-core shift. Can you identify a weaker assumption that will let the proof go through?

Hint: Notice that for the hard-core shift X given A,B ⊂ Zd which are sufficiently separated and

x, y ∈ X there exists z ∈ X such that z|A = x|A and z|B = y|B.

We finish with a very interesting question by Mike Hochman. One of the great successes of

(measure-theoretic) entropy was the realisation by Ornstein that (measure-theoretic) entropy was

the complete invariant of isomorphism of iid processes, that is, two iid processes are isomorphic

(under measure theoretic isomorphism) if and only if they have the same entropy [12]. In general

though, isomorphism of processes is a wildly complicated study with no hope for such a simple

criterion [3].

In a different direction, Hochman’s recent results [5, 6] implied that entropy is a complete in-

variant for Borel isomorphism of SFTs (under a mixing assumption) modulo the periodic points.

In particular the two full shift and the space of proper 3-colourings are Borel isomorphic modulo

periodic points. The question now arises whether these Borel isomorphisms can be replaced by

homeomorphisms.

Question 8 (Hochman—this is open though). Let X and Y be the full shift on k symbols and

the space of proper k + 1-colorings leaving out the periodic points respectively. We know that they

have the same entropy from Question 1 that they have the same entropy. Is there an equivariant

homeomorphism between the two?
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