Uniqueness and Non-Uniqueness of Measures of Maximal Entropy Based on the lecture notes by R. Pavlov

Tymoteusz Chmiel

Jagiellonian University

13.09.2019

Iceberg shift \mathcal{I}_M

Iceberg shift \mathcal{I}_M

The alphabet is $\mathcal{A} = \{-M, \dots, -1, 1, \dots, M\}, M \in \mathbb{N},$ and the set of forbidden patterns is $\{(ij), \binom{i}{i} : ij < -1\}.$

Iceberg shift \mathcal{I}_M

The alphabet is $\mathcal{A} = \{-M, \ldots, -1, 1, \ldots, M\}, M \in \mathbb{N},$ and the set of forbidden patterns is $\{(ij), \binom{i}{i} : ij < -1\}.$

Hard-core shift ${\mathcal H}$

Iceberg shift \mathcal{I}_M

The alphabet is $\mathcal{A} = \{-M, \dots, -1, 1, \dots, M\}, M \in \mathbb{N},$ and the set of forbidden patterns is $\{(ij), \binom{i}{i} : ij < -1\}.$

Hard-core shift ${\mathcal H}$

The alphabet is $\mathcal{A} = \{0, 1\}$ and the set of forbidden patterns is $\{(11), \binom{1}{1}\}$.

Iceberg shift \mathcal{I}_M

The alphabet is $\mathcal{A} = \{-M, \ldots, -1, 1, \ldots, M\}, M \in \mathbb{N},$ and the set of forbidden patterns is $\{(ij), \binom{i}{i} : ij < -1\}.$

Hard-core shift \mathcal{H}

The alphabet is $\mathcal{A} = \{0, 1\}$ and the set of forbidden patterns is $\{(11), \binom{1}{1}\}$.

We will show that Iceberg shift admits at least two measures of maximal entropy, while for Hard-core shift there is a unique mme.

Iceberg shift \mathcal{I}_M

The alphabet is $\mathcal{A} = \{-M, \dots, -1, 1, \dots, M\}, M \in \mathbb{N},$ and the set of forbidden patterns is $\{(ij), \binom{i}{i} : ij < -1\}.$

Hard-core shift \mathcal{H}

The alphabet is $\mathcal{A} = \{0, 1\}$ and the set of forbidden patterns is $\{(11), \binom{1}{1}\}$.

We will show that Iceberg shift admits at least two measures of maximal entropy, while for Hard-core shift there is a unique mme.

To be precise, we will show that for uniform Gibbs measures.

First we construct two shift-invariant uniform Gibbs measures on \mathcal{I}_M .

First we construct two shift-invariant uniform Gibbs measures on \mathcal{I}_M .

This can be done by conditioning M, resp. -M, on $\partial \{-n, \ldots, n\}^2$ and then letting $n \to \infty$.

First we construct two shift-invariant uniform Gibbs measures on \mathcal{I}_M .

This can be done by conditioning M, resp. -M, on $\partial \{-n, \ldots, n\}^2$ and then letting $n \to \infty$.

Warning: there are some technical difficulties here.

First we construct two shift-invariant uniform Gibbs measures on \mathcal{I}_M .

This can be done by conditioning M, resp. -M, on $\partial \{-n, \ldots, n\}^2$ and then letting $n \to \infty$.

Warning: there are some technical difficulties here.

Let us denote by μ_+ , resp. μ_- , measures obtained by this procedure.

First we construct two shift-invariant uniform Gibbs measures on \mathcal{I}_M .

This can be done by conditioning M, resp. -M, on $\partial \{-n, \ldots, n\}^2$ and then letting $n \to \infty$.

Warning: there are some technical difficulties here.

Let us denote by μ_+ , resp. μ_- , measures obtained by this procedure.

They are uniform Gibbs measures and we will show that for M >> 1 they are indeed different.

To show this we will prove that $\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,\dots,n\}^2} \equiv -M) < \frac{1}{2} - \epsilon$.

To show this we will prove that $\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,\dots,n\}^2} \equiv -M) < \frac{1}{2} - \epsilon$.

Then obviously $\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,...,n\}^2} \equiv M) > \frac{1}{2} - \epsilon$ and therefore $\mu_+\{x_{(0,0)} > 0\} > \mu_-\{x_{(0,0)} > 0\} \implies \mu_+ \neq \mu_-.$

To show this we will prove that $\mathbb{P}(x_{(0,0)} > 0 \mid x \mid_{\partial \{-n,\dots,n\}^2} \equiv -M) < \frac{1}{2} - \epsilon$.

- Then obviously $\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,...,n\}^2} \equiv M) > \frac{1}{2} \epsilon$ and therefore $\mu_+\{x_{(0,0)} > 0\} > \mu_-\{x_{(0,0)} > 0\} \implies \mu_+ \neq \mu_-.$
- For any x such that $x_{(0,0)} > 0$ and $x|_{\partial \{-n,\dots,n\}^2} \equiv -M$ there is maximal path-connected component of $\{-n,\dots,n\}^2$ on which x is positive.
- Call it P_x and let $B_x := \partial P_x$.
- By the definition of \mathcal{I}_M we have $x|_{B_x} \equiv 1$ and $x|_{\partial(\mathbb{Z}^2 \setminus P_x)} \equiv -1$.

List all possible boundaries B_1, \ldots, B_k and let E_i be set of those $x \in \mathcal{A}^{\{-n,\ldots,n\}^2}$ for which $B_x = B_i$.

List all possible boundaries B_1, \ldots, B_k and let E_i be set of those $x \in \mathcal{A}^{\{-n,\ldots,n\}^2}$ for which $B_x = B_i$.

Therefore
$$\{x : x_{(0,0)} > 0\} = \bigcup_{i=1}^{k} E_i$$
.

List all possible boundaries B_1, \ldots, B_k and let E_i be set of those $x \in \mathcal{A}^{\{-n,\ldots,n\}^2}$ for which $B_x = B_i$.

Therefore $\{x : x_{(0,0)} > 0\} = \bigcup_{i=1}^{k} E_i.$

For $x \in E_i$ we can form an admissible element x' such that $x|_{\mathbb{Z}^2 \setminus P_x} = x'|_{\mathbb{Z}^2 \setminus P_x}$, $x'|_{P_x} \equiv -x|_{P_x}$ and $x'|_{B_x} < 0$ but arbitrary otherwise.

List all possible boundaries B_1, \ldots, B_k and let E_i be set of those $x \in \mathcal{A}^{\{-n,\ldots,n\}^2}$ for which $B_x = B_i$.

1.

Therefore
$$\{x : x_{(0,0)} > 0\} = \bigcup_{i=1}^{\kappa} E_i.$$

For $x \in E_i$ we can form an admissible element x' such that $x|_{\mathbb{Z}^2 \setminus P_x} = x'|_{\mathbb{Z}^2 \setminus P_x}$, $x'|_{P_x} \equiv -x|_{P_x}$ and $x'|_{B_x} < 0$ but arbitrary otherwise.

It follows that $\mathbb{P}(E_i \mid x|_{\partial \{-n,...,n\}^2} \equiv -M) < M^{-|B_i|}$ and further that

$$\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,...,n\}^2}) = \dots$$

$$\ldots = \sum_{i=1}^{k} \mathbb{P}(E_i \mid x|_{\partial \{-n,\ldots,n\}^2} \equiv -M) \leq \sum_{i=1}^{k} M^{-|B_i|}.$$

But for fixed j we have less than $j4^{j}$ possible B_{i} with $|B_{i}| = j$ and therefore

$$\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,\dots,n\}^2}) \leq \sum_{i=1}^k M^{-|B_i|} < \sum_{j=1}^\infty j 4^j M^{-j} = \dots$$

$$\ldots = (\sum_{j=1}^{\infty} j x^j)|_{x=\frac{4}{M}} = \frac{4M}{M^2 - 8M + 16} \to 0 \text{ for } M \to \infty.$$

But for fixed j we have less than $j4^{j}$ possible B_{i} with $|B_{i}| = j$ and therefore

$$\mathbb{P}(x_{(0,0)} > 0 \mid x|_{\partial \{-n,\dots,n\}^2}) \le \sum_{i=1}^k M^{-|B_i|} < \sum_{j=1}^\infty j 4^j M^{-j} = \dots$$
$$\dots = (\sum_{i=1}^\infty j x^j)|_{x=\frac{4}{M}} = \frac{4M}{M^2 - 8M + 16} \to 0 \text{ for } M \to \infty.$$

This conludes the proof.

To show uniqueess for the Hard-core shift we start with a lemma:

To show uniqueess for the Hard-core shift we start with a lemma:

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

To show uniqueess for the Hard-core shift we start with a lemma:

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

To prove it, take a cylinder [w] definied by the pattern w.

To show uniqueess for the Hard-core shift we start with a lemma:

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

To prove it, take a cylinder [w] definied by the pattern w.

For $(x, y) \in [w] \times (X \setminus [w])$ let $C_{(x,y)}$ be the maximal path-connected set intersecting w on which x and y disagree.

To show uniqueess for the Hard-core shift we start with a lemma:

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

To prove it, take a cylinder [w] definied by the pattern w.

For $(x, y) \in [w] \times (X \setminus [w])$ let $C_{(x,y)}$ be the maximal path-connected set intersecting w on which x and y disagree.

By our assumption for $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ $C_{(x,y)}$ is bounded and so there is a path surrounding w on which x and y agree.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

Define $\Phi: X \times X \to X \times X$ by $(\Phi(x), \Phi(y))|_{C_{(x,y)}} = (y, x)|_{C_{(x,y)}}$.

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

Define $\Phi: X \times X \to X \times X$ by $(\Phi(x), \Phi(y))|_{\mathcal{C}_{(x,y)}} = (y, x)|_{\mathcal{C}_{(x,y)}}$.

By the uniform Gibbs property of μ and $\nu \Phi$ preserves $\mu \times \nu$.

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

Define
$$\Phi: X \times X \to X \times X$$
 by $(\Phi(x), \Phi(y))|_{\mathcal{C}_{(x,y)}} = (y, x)|_{\mathcal{C}_{(x,y)}}$.

By the uniform Gibbs property of μ and $\nu \Phi$ preserves $\mu \times \nu$.

We also have $\Phi([w] \times (X \setminus [w])) = (X \setminus [w]) \times [w]$, implying $(\mu \times \nu)([w] \times (X \setminus [w])) = (\mu \times \nu)((X \setminus [w]) \times [w]).$

Lemma (van den Berg-Steif)

Let μ and ν be uniform Gibbs measures on an STF X such that $(\mu \times \nu)$ -a.e. pair $(x, y) \in X \times X$ patterns x and y agree somwhere on every infinite path. Then $\mu = \nu$.

Therefore we get

$$\mu([w]) = (\mu \times \nu)([w] \times X) = (\mu \times \nu)([w] \times (X \setminus [w])) + (\mu \times \nu)([w] \times [w]) = \dots$$

$$\ldots = (\mu \times \nu) \big((X \setminus [w]) \times [w] \big) + (\mu \times \nu) \big([w] \times [w] \big) = (\mu \times \nu) \big(X \times [w] \big) = \nu([w]).$$

Since cylinders generate the topology, that concludes the proof.

So it is enough to show that any uniform Gibbs measures μ , ν on the Hard-core shift satisfy the assumption of the previous lemma.

So it is enough to show that any uniform Gibbs measures $\mu,~\nu$ on the Hard-core shift satisfy the assumption of the previous lemma.

To see this we observe that $(\mu \times \nu)(x_{(0,0)} \neq y_{(0,0)}|E) \leq \frac{1}{2}$ where we condition on any event generated by points different than (0,0).

So it is enough to show that any uniform Gibbs measures $\mu,~\nu$ on the Hard-core shift satisfy the assumption of the previous lemma.

To see this we observe that $(\mu \times \nu)(x_{(0,0)} \neq y_{(0,0)}|E) \leq \frac{1}{2}$ where we condition on any event generated by points different than (0,0).

Consider the Bernoulli measure μ_p which assigns to a vertex 0 with probability p and 1 with probability 1 - p.

So it is enough to show that any uniform Gibbs measures μ , ν on the Hard-core shift satisfy the assumption of the previous lemma.

To see this we observe that $(\mu \times \nu)(x_{(0,0)} \neq y_{(0,0)}|E) \leq \frac{1}{2}$ where we condition on any event generated by points different than (0,0).

Consider the Bernoulli measure μ_p which assigns to a vertex 0 with probability p and 1 with propability 1 - p.

It follows that for $S \subset \mathbb{Z}^2$ $(\mu \times \nu)(x|_S \neq y|_S) \leq \mu_{\frac{1}{2}}(x|_S = 0).$

Bernoulli measure μ_p assigns to a vertex 0 with probability p and 1 with propability 1 - p.

Bernoulli measure μ_p assigns to a vertex 0 with probability p and 1 with propability 1 - p.

Now our claim would follow if $\mu_{\frac{1}{2}}(x|_S = 0) = 0$ for S - an infinite path.

Bernoulli measure μ_p assigns to a vertex 0 with probability p and 1 with propability 1 - p.

Now our claim would follow if $\mu_{\frac{1}{2}}(x|_S = 0) = 0$ for S - an infinite path.

This is related to the percolation theory where for $p \in [0, 1]$ we consider μ_p and the set C_p of all points $x \in \mathbb{Z}^2$ joined to (0, 0) by a path of 0-vertices.

Bernoulli measure μ_p assigns to a vertex 0 with probability p and 1 with propability 1 - p.

Now our claim would follow if $\mu_{\frac{1}{2}}(x|_S = 0) = 0$ for S - an infinite path.

This is related to the percolation theory where for $p \in [0, 1]$ we consider μ_p and the set C_p of all points $x \in \mathbb{Z}^2$ joined to (0, 0) by a path of 0-vertices.

Define
$$\Theta(p) := \mu_p(|\mathcal{C}_p| = \infty)$$
 and $p_c := \sup\{p \in [0,1] : \Theta(p) = 0\}.$

Bernoulli measure μ_p assigns to a vertex 0 with probability p and 1 with propability 1 - p.

Now our claim would follow if $\mu_{\frac{1}{2}}(x|_S = 0) = 0$ for S - an infinite path.

This is related to the percolation theory where for $p \in [0, 1]$ we consider μ_p and the set C_p of all points $x \in \mathbb{Z}^2$ joined to (0, 0) by a path of 0-vertices.

Define
$$\Theta(p) := \mu_p(|\mathcal{C}_p| = \infty)$$
 and $p_c := \sup\{p \in [0,1] : \Theta(p) = 0\}.$

Harris and Hammersley showed that $p_c > \frac{1}{2}$ and this is precisely what we need to finish the proof.

References

