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Examples of subshifts on Z2

Iceberg shift IM

The alphabet is A = {−M, . . . ,−1, 1, . . . ,M},M ∈ N,
and the set of forbidden patterns is {(ij),

(i
j

)
: ij < −1}.

Hard-core shift H

The alphabet is A = {0, 1} and the set of forbidden patterns is {(11),
(1
1

)
}.

We will show that Iceberg shift admits at least two measures of
maximal entropy, while for Hard-core shift there is a unique mme.

To be precise, we will show that for uniform Gibbs measures.
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Non-Uniqueness for the Iceberg shift

First we construct two shift-invariant uniform Gibbs measures on IM .

This can be done by conditioning M, resp. −M, on ∂{−n, . . . , n}2
and then letting n→∞.

Warning: there are some technical difficulties here.

Let us denote by µ+, resp. µ−, measures obtained by this procedure.

They are uniform Gibbs measures and we will show that for M >> 1 they
are indeed different.
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Non-Uniqueness for the Iceberg shift

To show this we will prove that P(x(0,0) > 0 | x |∂{−n,...,n}2 ≡ −M) < 1
2 − ε.

Then obviously P(x(0,0) > 0 | x |∂{−n,...,n}2 ≡ M) > 1
2 − ε

and therefore µ+{x(0,0) > 0} > µ−{x(0,0) > 0} =⇒ µ+ 6= µ−.

For any x such that x(0,0) > 0 and x |∂{−n,...,n}2 ≡ −M there is maximal

path-connected component of {−n, . . . , n}2 on which x is positive.

Call it Px and let Bx := ∂Px .

By the definition of IM we have x |Bx ≡ 1 and x |∂(Z2\Px ) ≡ −1.
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Non-Uniqueness for the Iceberg shift

List all possible boundaries B1, . . . ,Bk and let Ei be set of those
x ∈ A{−n,...,n}2 for which Bx = Bi .

Therefore {x : x(0,0) > 0} =
k⋃

i=1

Ei .

For x ∈ Ei we can form an admissible element x ′ such that
x |Z2\Px

= x ′|Z2\Px
, x ′|Px ≡ −x |Px and x ′|Bx < 0 but arbitrary otherwise.

It follows that P(Ei | x |∂{−n,...,n}2 ≡ −M) < M−|Bi | and further that

P(x(0,0) > 0 | x |∂{−n,...,n}2) = . . .

. . . =
k∑

i=1

P(Ei | x |∂{−n,...,n}2 ≡ −M) ≤
k∑

i=1

M−|Bi |.
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Non-Uniqueness for the Iceberg shift

But for fixed j we have less than j4j possible Bi with |Bi | = j and therefore

P(x(0,0) > 0 | x |∂{−n,...,n}2) ≤
k∑

i=1

M−|Bi | <

∞∑
j=1

j4jM−j = . . .

. . . = (
∞∑
j=1

jx j)|x= 4
M

=
4M

M2 − 8M + 16
→ 0 for M →∞.

This conludes the proof.
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Uniqueness for the Hard-core shift

To show uniqeness for the Hard-core shift we start with a lemma:

Lemma (van den Berg-Steif)

Let µ and ν be uniform Gibbs measures on an STF X such that
(µ× ν)-a.e. pair (x , y) ∈ X × X patterns x and y agree somwhere on
every infinite path.
Then µ = ν.

To prove it, take a cylinder [w ] definied by the pattern w .

For (x , y) ∈ [w ]× (X \ [w ]) let C(x ,y) be the maximal path-connected set
intersecting w on which x and y disagree.

By our assumption for (µ× ν)-a.e. pair (x , y) ∈ X × X C(x ,y) is bounded
and so there is a path surrounding w on which x and y agree.
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Uniqueness for the Hard-core shift

Lemma (van den Berg-Steif)

Let µ and ν be uniform Gibbs measures on an STF X such that
(µ× ν)-a.e. pair (x , y) ∈ X × X patterns x and y agree somwhere on
every infinite path.
Then µ = ν.

Define Φ : X × X → X × X by
(
Φ(x),Φ(y)

)
|C(x,y)

=
(
y , x
)
|C(x,y)

.

By the uniform Gibbs property of µ and ν Φ preserves µ× ν.

We also have Φ
(
[w ]× (X \ [w ])

)
= (X \ [w ])× [w ], implying

(µ× ν)
(
[w ]× (X \ [w ])

)
= (µ× ν)

(
(X \ [w ])× [w ]

)
.
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Uniqueness for the Hard-core shift

Lemma (van den Berg-Steif)

Let µ and ν be uniform Gibbs measures on an STF X such that
(µ× ν)-a.e. pair (x , y) ∈ X × X patterns x and y agree somwhere on
every infinite path.
Then µ = ν.

Therefore we get

µ
(
[w ]
)

= (µ×ν)
(
[w ]×X

)
= (µ×ν)

(
[w ]×(X\[w ])

)
+(µ×ν)

(
[w ]×[w ]

)
= . . .

. . . = (µ×ν)
(
(X\[w ])×[w ]

)
+(µ×ν)

(
[w ]×[w ]) = (µ×ν)

(
X×[w ]

)
= ν([w ]).

Since cylinders generate the topology, that concludes the proof.

Tymoteusz Chmiel (Jagiellonian University) Uniqueness and Non-Uniquenessof Measures of Maximal Entropy 13.09.2019 9 / 12



Uniqueness for the Hard-core shift

So it is enough to show that any uniform Gibbs measures µ, ν on the
Hard-core shift satisfy the assumption of the previous lemma.

To see this we observe that (µ× ν)
(
x(0,0) 6= y(0,0)|E

)
≤ 1

2 where we
condition on any event generated by points different than (0, 0).

Consider the Bernoulli measure µp which assigns to a vertex 0 with
probability p and 1 with propability 1− p.

It follows that for S ⊂ Z2 (µ× ν)
(
x |S 6= y |S

)
≤ µ 1

2
(x |S = 0).
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Uniqueness for the Hard-core shift

Bernoulli measure µp assigns to a vertex 0 with probability p and 1 with
propability 1− p.

Now our claim would follow if µ 1
2
(x |S = 0) = 0 for S - an infinite path.

This is related to the percolation theory where for p ∈ [0, 1] we consider µp
and the set Cp of all points x ∈ Z2 joined to (0, 0) by a path of 0-vertices.

Define Θ(p) := µp(|Cp| =∞) and pc := sup{p ∈ [0, 1] : Θ(p) = 0}.

Harris and Hammersley showed that pc >
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