
Lecture 6: Computability of entropy for
hom-shifts and loads of questions about tiling

shifts

Nishant Chandgotia

Hebrew University of Jerusalem

September

1 / 50



Graph homomorphisms and hom-shifts

A graph homomorphism is a map between graphs which preserves
adjacencies. Given a graph H, a hom-shift associated with H is the
space

X d
H = {graph homomorphisms from Zd to H}.

There are nearest neighbour shifts of finite type which are invariant
under permutations of coordinates and reflections.
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Some examples: Full shifts

0 1

Graph H

Figure : No Constraints
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Some examples: The hard-core shift

The symbols are 0 and 1. Adjacent symbols in this shift cannot be
both 1. This is the space X d

H where H is given by the graph below.

00 0 0 0

000

0 0 0

0000

1 0 0 0 0

1 1

0 1

1

0 1

Graph H
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Some examples: Proper q-colorings

The symbols are 1, 2, 3, . . . , q. Adjacent symbols in this shift are
distinct. This is the space X d

Kq
where Kq is the complete graph on

q vertices.

K3

Figure : Proper 3-colorings
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Topological entropy

Let X be a shift space and for each n the topological entropy is
defined by

htop(X ) := lim
n→∞

1

|Bn|
log(|L(X ,Bn)|).

htop(A
Zd

) = log(|A|).
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Approximation of entropy

Can htop(X ) be computed?

Theorem (Hochman and Meyerovitch (2010))

The set of entropies of SFTs when d ≥ 2 are precisely the
non-negative right recursively enumerable numbers, that is,
numbers for which there exists algorithms approximating it from
above.

So there is not much hope to do so in complete generality.
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Approximation of entropy

BUT
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Approximation of entropy

Theorem (Friedland 1997)

The entropy of hom-shifts can be computed, meaning, there exists
an algorithm which can give approximating upper and lower
bounds.
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Entropy of the hard-square shift and an important question

Theorem (Pavlov 2012)

The entropy of the hard-square shift can be approximated upto
accuracy 1

n in time Poly(n).

Question

Is this true for all hom-shifts in 2 dimensions?
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Entropy of hom-shifts can be computed

Theorem (Friedland 1997)

The entropy of hom-shifts can be computed, meaning, there exists
an algorithm which can give approximating upper and lower
bounds.

There is a nice and simple argument which shows that for SFTs in
general, there is an algorithm which can approximate the entropy
from above. So we have to come up with approximating lower
bounds.
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Why do we love periodic points?

A point x ∈ X has period 2n if σn~ei (x) = x for all 1 ≤ i ≤ d . The
set of configurations with period 2n is denoted by

Per(X , 2n) := {x ∈ X : σ2n~ei (x) = x for all 1 ≤ i ≤ d}.

Suppose for a nearest neighbour SFT we know that there a lot of
periodic points. More precisely suppose there is a c > 0 such that

|Per(X , 2n)|
|L(X ,Bn)|

≥ e−cn
d−1

.

Let us see how we can get an algorithm to approximate the
entropy from below.
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A nice periodic boundary for each n

Counting periodic points of a nearest neighbour SFT is easy. Let
us look at what this means for d = 2.

The top row = the bottom row. The left column = the right
column and nothing forbidden appears
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A nice periodic boundary for each n

Look at all the elements of Per(X , 2n). There are at most

|A|cnd−1 different boundary patterns which can appear.

Thus there exists a boundary pattern an such that the number of
elements with an on the boundary

|Peran(X , 2n)| ≥ |A|−cnd−1 |Per(X , 2n)|
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But now notice that if a, b ∈ Peran(X , 2n) then we can put them
together side by side and they will still be a valid pattern in X .

a ab b
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Tiling big patterns with smaller ones

Bkn can be tiled by kd disjoint translates of Bn. Each kd collection
of patterns from Peran(X , 2n) gives a valid. pattern on Bkn.

This gives us an immediate bound (for some c > 0)

|L(X ,Bkn)| ≥ |Peran(X , 2n)|kd
.
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Putting it together

We proved:

|Peran(X , 2n)| ≥ |A|−cnd−1 |Per(X , 2n)|
|L(X ,Bkn)| ≥ |Peran(X , 2n)|kd

.

Thus

|L(X ,Bkn)| ≥ |A|−cn
d−1kd |Per(X , 2n)|kd

.

and there exists c ′ > 0 such that

lim
n→∞

1

|Bkn|
log(|L(X ,Bkn)|) ≥

c ′

n
+ lim inf

n→∞

1

|Bn|
log(|Per(X , 2n)|).

So we will just prove that for hom-shift, X d
H , there exists c ′′ > 0

such that
|Per(X , 2n)|
|L(X ,Bn)|

≥ e−c
′′nd−1 .
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How to prove |Per(X ,2n)|
|L(X ,Bn)| ≥ e−c

′′nd−1?

Put the uniform probability measure on L(X d
H ,Bn) and lets restrict

our attention to d = 2. There must exist some graph
homomorphism a from ∂Bn ∩N2 to H such that

P([a]Bn∩N2) ≥ |H |−3n.

a
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How to prove |Per(X ,2n)|
|L(X ,Bn)| ≥ e−c

′′nd−1? d = 2.

It follows that for any graph homomorphism b from
{−n,−n+ 1, . . . , n} × {0} to H,

P(a, reflection of a about {−n,−n+ 1, . . . , n} × {0} | b) = P(a | b)2.

a

b
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How to prove |Per(X ,2n)|
|L(X ,Bn)| ≥ e−c

′′nd−1? d = 2

It follows that for any graph homomorphism b from
{−n,−n+ 1, . . . , n} × {0} to H,

P(a, reflection of a about {−n,−n+ 1, . . . , n} × {0} | b) = P(a | b)2.

a

reflection of a

b
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How to prove |Per(X ,2n)|
|L(X ,Bn)| ≥ e−c

′′nd−1? d = 2

By integrating over all possible values of b, we have that

P(a, reflection of a about {−n,−n+ 1, . . . , n} × {0}) ≥ P(a)2

≥ |H |−6n.

a

reflection of a
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How to prove |Per(X ,2n)|
|L(X ,Bn)| ≥ e−c

′′nd−1? d = 2

By applying another reflection about {0} × {−n,−n+ 1, . . . , n}
we have that

P(Per(X , 2n)) ≥ |H |−12n.

Thus
|Per(X , 2n)|
|L(X ,Bn)|

≥ e−c
′′n.

a

reflection of a

reflection about
{0}X{-n,...n}
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A similar idea works in higher dimensions. This is called reflection
positivity. A much more advanced application of this method gives
us that

1 (Chandgotia and Peled) There exists a fully supported mme
for all hom-shifts for connected graphs H. (but we cannot
prove that all mmes are fully supported.

2 (Chandgotia and Meyerovitch) Hom-shifts X d
H are universal

when H is not bipartite.
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Rectangular tiling shifts

24 / 50



Tilings by rectangular tiles

A rectangular tile is a subset of Zd of the form
[1, i1]× [1, i2]× · · · × [1, id ] for i1, i2, . . . , id ∈N.

Given a set of rectangular tiles, T , we denote by XT the set of
tilings of Zd by elements of T . It comes with the natural Zd -shift
action which makes it a shift of finite type.
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Examples: Dimer Tilings

Dimers are the set of rectangular tiles given by

Tdim = {[1, i1]× [1, i2]× · · · × [1, id ] :
d

∏
t=1

it = 2}.

Let Xdim be the set of dimer tilings.

Dimers

A Dimer tiling
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Examples: Monomer k-mer tilings

Let

T = {[1]d}∪{[1, i1]× [1, i2]×· · ·× [1, id ] : it = 1 or k and
d

∏
t=1

it = k}.

The set of tilings by T is called the monomer k-mer shift.

AMonomer 2-mer tiling
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Mixing properties of tiling shifts

Dimer tilings are not strongly irreducible.
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Mixing properties of tiling shifts

However monomer k-mer shifts are clearly strongly irreducible.
Given tilings of regions A and B which do not intersect, the
complement can be tiled by monomers.
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Mixing properties of tiling shifts

Question

Is strong irreducibility of rectangular tiling shifts decidable?
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Mixing properties of tiling shifts

A set of tiles T is called prime if the greatest common divisor of
side lengths along any given direction is 1.

It is easy to see that if T is not prime then XT is not topologically
mixing.

Theorem (Einsedler 2001)

For Z2 tiling shifts, if |T | = 2, then XT is mixing if and only if T
is prime.

Question

Prove this in general.
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The main idea for proving mixing

If a set of tiles T is prime, then T can tile the complement of any
two rectangles provided the rectangles are far enough apart.
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The main idea for proving mixing

So to prove mixing is sufficient to prove that the restriction of any
tiling of Z2 to a finite region can be extended to a tiling of a
rectangle.
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Extending tilings

Question

How often can we extend a tiling of a region to a tiling of a slightly
bigger rectangle?

Fix P to be the product of the sides of the tiles in T .

Let Freen be the set of tilings of Zd restricted to [1, nP ]d .

Let Periodicn be the set of nP-periodic tilings of Zd restricted to
[1, nP ]d .

Let Perfectn be the set of tilings of Zd restricted to [1, nP ]d .
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Topological, Periodic and Perfect

Free Periodic Perfect

htop(XT ) = lim
n→∞

1

(np)d
log(Freen).

hPeriodic(XT ) = lim inf
n→∞

1

(np)d
log(Periodicn).

hPerfect(XT ) = lim inf
n→∞

1

(np)d
log(Perfectn).
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Topological, Periodic and Perfect

We know immediately

htop(XT ) ≥ hPeriodic(XT ) ≥ hPerfect(XT ).

If T is prime and htop(XT ) = hPerfect(XT ) then XT is universal.

If htop(XT ) = hPeriodic(XT ) then htop(XT ) is computable.

For d = 2, this follows from Kastelyn’s formalism for domino
tilings.

Theorem

(C, 2019) For domino tilings htop(XT ) = hPerfect(XT ) for all
dimensions d.
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The proof uses the fact that dominos can be reflected

Reflection
line
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The proof uses the fact that dominos can be reflected
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and some d − 1-cube cohomology.
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Conjecture

Conjecture

XT is universal for all prime tiling sets T . In other words prove
that htop(XT ) = hPerfect(XT ).
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