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Some preliminaries

All measures in this talk will be complex-valued, outer-inner
regular, finite and on the group R/Z (also denote by T). The

Fourier transform of µ is denoted by µ̂.

The Lebesgue measure on R/Z will be denoted by µl .

The support of a function f : Z→ C is given by

supp(f ) = {n ∈ Z : f (n) 6= 0}.
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The basic definition

Definition

A set P ⊂ Z is called a Riesz set if for all measures µ for which

supp(µ̂) ⊂ P

we have that µ is absolutely continuous with respect to the
Lebesgue measure.
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Some elementary properties of Riesz sets

Definition

A set P ⊂ Z is called a Riesz set if for all measures µ for which

supp(µ̂) ⊂ P

we have that µ is absolutely continuous with respect to the
Lebesgue measure.

1 If P = {p1, p2, . . . , pn} is a finite set and supp(µ̂) ⊂ P, then

dµ(x) =

(
n

∑
t=1

at exp(2πiptx)

)
dµl (x)

for some at ∈ C. Thus finite sets are Riesz sets.
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Definition

A set P ⊂ Z is called a Riesz set if for all measures µ for which

supp(µ̂) ⊂ P

we have that µ is absolutely continuous with respect to the
Lebesgue measure.

1 Finite sets are Riesz sets.
2 Let P ⊂ Z be a Riesz set, ε ∈ {−1, 1} and n ∈ Z. Let us see

why εP + n is also a Riesz set.

Let µ be a measure such that
supp(µ̂) ⊂ εP + n. Let ν be a measure given by

dν(x) = exp(2πinx)dµ(εx).
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Here is a cute exercise. Let k ∈N. Prove that P is a Riesz set if
and only if kP is a Riesz set.

Hint: Use the map x to kx from R/Z to R/Z.
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Can infinite sets be Riesz sets?

This is already a non-trivial question and the answer to this lies in
a beautiful theorem by F. and M. Riesz.
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Natural numbers form a Riesz set

Theorem (Riesz brothers, 1923)

The natural numbers form a Riesz set.

Of course they did not call it Riesz sets (this was Meyer’s
terminology).

An infinite set of natural numbers {ni : i ∈N} is called a
lacunary set if there is a λ > 1 such that ni+1/ni > λ for all
i ∈N. Rudin realised that he can prove the following extension.

Theorem (Rudin, 1960)

The union of the negative numbers and a lacunary set is a Riesz
set.
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In 1968, gave these sets a name and proved many interesting
results about them.

Theorem (Meyer 1968)

The union of the negative numbers and the set of squares is a
Riesz set.

I do not know if this holds for the cubes. This has much to do
with the Bohr topology on the integers which we will discuss soon.
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The Main question

The main question I want to advertise via this talk is the following.

We say that a sequence of natural numbers ni is a sparse sequence
if it is an increasing sequence such that the differences ni+1 − ni is
also an increasing set

Question

Is the union of a sparse sequence with the negative integers a Riesz
set?

I must warn you that the Bohr topology will not help you anymore.

Here is a partial answer to the question.

Theorem (Wallen, 1970)

Let P ⊂ Z be a set of the type given above and µ be a measure
such that supp(µ̂) ⊂ P. Then µ ? µ is absolutely continuous.
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Structure of the talk

1 Why did I start caring?

2 Proof of Riesz brothers’ theorem.

3 A primer on the Bohr topology.

4 How can Bohr topology help or hurt? Why does this work for
the square and not for the cubes. Why can’t it work for sparse
sequences?

5 Fermat’s last theorem and the cubes.

6 How do you prove something is not a Riesz set?

7 Wallen’s convolution theorem.
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Why care?

The short answer is that it is a very natural and basic question.
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Why care?-Longer answer

A set Q ⊂N is called a totally predictive set for all zero entropy
processes Xi ; i ∈N, Xn is measurable function of Xi ; i ∈ Q for all
n ∈ Z.

In a paper with Benjamin Weiss we proved that

(Under technical assumptions) If Q is a totally predictive set then
Z \Q is a Riesz set.

(Under technical assumptions) If P ⊂N is such that P ∪ (−N) is
a Riesz set then N \ P is a totally predictive set.

Further, there are many similarities in methods known to prove
that a set is predictive and methods known to prove that a set is a
Riesz set.
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But going too deep into this will take us far afield.
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Proof of Riesz brothers’ theorem (by Øksendal, 1971)
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Something to confuse you with

We will shuttle between the R/Z version of the circle and
{exp(2πix); x ∈ [0, 1]} model of the circle. For this proof we will
use the latter.
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N is a Riesz set: polynomials integrate to zero

Let µ be a measure such that supp(µ̂) ⊂N. We will prove that µ
is absolutely continuous.

Equivalently for all trignometric polynomials p we have that∫
pdµ = 0.

This implies for instance that∫
1

1 + rz
dµ = 0

for r > 1.

This is what I want you to remember about µ.
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N is a Riesz set: Compact sets and covers

Let F be a compact set such that µl (F ) = 0. It is enough to show
that µ(F ) = 0.

Let n ∈N. Choose disjoint intervals Ui centred at
z1, z2, . . . , zN ∈ F and of radii r1, r2, . . . rN such that they cover F
and

µl (∪Ni=1Ui ) < 1/n2.

Let gn : T→ C be given by

gn(z) = 1−
N

∏
i=1

z − zi
z − (1 + nri )zi

.

We will show that gn approximates the 1F ; the indicator function
of F .
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gn(z) = 1−∏N
i=1

z−zi
z−(1+nri )zi

: What happens on F?

1
∫

gndµ = 0

since gn can be approximated uniformly by
polynomials.

2 | z−zi
z−(1+nri )zi

| ≤ 1 for all z ∈ T.

3 | z−zi
z−(1+nri )zi

| ≤ 1
n−1 for all z ∈ Ui (ball of radius ri around zi ).

4 Thus |gn(z)− 1| ≤ 1
n−1 for all z ∈ F .
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gn(z) = 1−∏N
i=1

z−zi
z−(1+nri )zi

: What happens away from F?

Suppose z ∈ T such that |z − zi | > δ for all 1 ≤ i ≤ N then we
have

|gn(z)| =

∣∣∣∣∣1− N

∏
i=1

(
1 +

nrizi
z − (1 + nri )zi

)∣∣∣∣∣

≤
N

∏
i=1

(
1 +

nri
|z − (1 + nri )zi |

)
− 1

≤
N

∏
i=1

(
1 +

nri
δ

)
− 1

≤ exp

(
n ∑N

i=1 ri
δ

)
− 1.

≤ exp

(
1

nδ

)
− 1→ 0 as n→ ∞.
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Thus gn → 1F as n→ ∞. Recall we had
∫

gndµ = 0. By
dominated convergence theorem we have µ(F ) = 0. This
concludes the proof.
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Daniel pointed out that the product had a similar form as do
Blashke products.
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Structure of the talk

1 Why did I start caring?X
2 Proof of Riesz brothers’ theorem.X
3 A primer on the Bohr topology.

4 How can Bohr topology help or hurt? Why does this work for
the square and not for the cubes. Why can’t it work for sparse
sequences?

5 Fermat’s last theorem and the cubes.

6 How do you prove something is not a Riesz set?

7 Wallen’s convolution theorem.
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A primer on the Bohr topology
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The Pontryagin dual

Let G be a locally compact abelian group. The Pontryagin dual of
G is given by

Ĝ := {φ : G → T : φ is a continuous group homomorphism}.

It is given the topology generated by the compact-open topology,
that is, the topology generated by sets of the form

{φ : G → T : φ(K ) ⊂ U}

where K ⊂ G is compact and U ⊂ T is open.
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Bohr topology

We will need to worry about atomic measures on the torus. These
are precisely all the Borel measures on T with the discrete
topology.

We denote this by Td .

Let φn : Td → T be given by φn(α) = nα. Notice the copy of Z

in T̂d given by n→ φn.

The Bohr topology is the topology on this copy of Z induced by
T̂d .

OK! But what does this mean?
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But what is Bohr topology?

Given a finite (compact) set K ⊂ Td and an open set U ⊂ T let

O(K , U) := {n ∈ Z : φn(K ) ⊂ U}.

Sets of the type O(K , U) generate the Bohr topology. If
K = α1, α2, . . . , αt then

O(K , U) := {n ∈ Z : nαi ⊂ U for all 1 ≤ i ≤ t}.
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Summary

The Bohr topology is the topology induced on Z from T̂d .

It is generated by visit times of a rotation on a torus (in general on
compact groups), that is,

Given α ∈ Td and an open set U ⊂ Td consider the visit times of
x ∈ Td given by

N(x , U) := {n ∈ Z : nα ∈ U}.
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The main fact that we need about the Bohr topology

Theorem

For all open sets U ⊂ Z and n ∈ U, there exists an atomic
measure σ such that

σ̂(n) = 1 and σ̂|Z\U = 0.

This should remind you of Tietze’s extension theorem from
topology.

The proof is requires a little bit of background. I have often
wondered if there is a simple elementary proof of this fact.
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What is the Fourier transform?

Let G be a locally compact abelian group. By L1(G ) we mean the functions whose
modulus is is integrable with respect to a Haar measure µHaar on the group.

Given f ∈ L1(G ), we write f̂ : Ĝ → C given by

f̂ (n) =
∫
G
n(x)f (x)dµHaar (x).

If G = Td , the Haar measure is the counting measure and the Fourier transform is just

f̂ (n) =
∫

n(x)f (x)dµHaar (x).

for all n ∈ T̂d .

But if f ∈ L1(Td ) then it is supported on a countable set, that is,
f (x) = ∑j∈N aj δxj (x).

Thus for n ∈ Z we have that

f̂ (n) =
∫

n(x)f (x)dµHaar (x) = ∑
j∈N

n(xj )aj = ∑
j∈N

exp(2πjnxj )aj .
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What is the Fourier transform?

Given f ∈ L1(Td ), we can define an atomic measure
µf = ∑j∈N ajδxj .

We have then that the usual Fourier transform

µ̂f (n) =
∫

T
exp(2πinx)dµ(x) = ∑

j∈N

exp(2πjnxj )aj = f̂ (n).

Now we are ready for the proof.
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Atomic measure σ such that σ̂(n) = 1 and σ̂|Z\U = 0

where n ∈ U is open.

Let U ′ ⊂ T̂d be an open set such that U ′ ∩Z = U. Let µH

denote the Haar (probability) measure on T̂d .

By the continuity of the map from T̂d × T̂d → T̂d given by
(u, v)→ u − v there exists an open set V ⊂ T̂d containing 0 such
that n− (V − V ) ⊂ U ′.

Equivalently, (T̂d \ U ′)− V and n− V are disjoint.
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Atomic measure σ such that σ̂(n) = 1 and σ̂|Z\U = 0

where n ∈ U is open.

(T̂d \ U ′)− V and n− V are disjoint.

Since 1V is in L∞(T̂d ) we have that 1̂V ∈ L1(Td ) ⊂ L2(Td ). Let
k ∈ L1(Td ) be given by

k :=
1

µ(V )
1̂V 1̂n−V .

Let σ be the atomic measure corresponding to k . We have that

σ̂(n) =
1

µ(V )

∫
V

1n−V (n−m) dµ(m) = 1

and for s ∈ Z \ U ′ = Z \ U we have that s −m /∈ n− V for all
m ∈ V and hence

σ̂(s) =
1

µ(V )

∫
V

1n−V (s −m) dµ(m) = 0.
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Thus σ is the required atomic measure.
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Closures in the Bohr topology

Let us run through some simple examples the closure of Bohr
topology.

But before that we have to introduce some results in ergodic
theory.
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Poincaré sets

A set P ⊂N is called a Poincaré set if for probability preserving
transformations (X , µ, T ) and sets U of positive measures, there
exists n ∈ P such that

µ(T−n(U) ∩U) > 0.

We will use the following result which I believe goes back to
Furstenberg.

Theorem

Let p : Z→ Z be a polynomial. The set p(Z) ∩N is a Poincaré
set if and only if p has a root modulo m for every m.

Remark: The set p(Z) ∩N intersects every Bohr neighbourhood of 0 if
and only if p has a root modulo m for every m.
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Poincaré sets

Theorem

Let p : Z→ Z be a polynomial. The set p(Z) ∩N is a Poincaré
set if and only if p has a root modulo m for every m.

Such polynomials are called intersective polynomials.

Irreducible polynomials are not intersective. (Not immediate and
the easiest proof requires a fair bit of Galois theory).

However for simple irreducible polynomials this is not difficult to
prove directly. One can use this to prove the following result.

Theorem

Fix k = 2, 3. For all t ∈ Z ,

{nk + t : n ∈N} ∩N

is a Poincaré set if and only if t has a kth integral root.
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is a Poincaré set if and only if t has a kth integral root.

94 / 197



Poincaré sets
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The closure of sets

Theorem

Fix k = 2, 3. For all t ∈ Z ,

{nk + t : n ∈N} ∩N

intersects every Bohr neighbourhood of zero if and only if t has a
kth integral root.

Let Q ⊂ Z be a subset of integers. Recall that we have that
m ∈ Q if all Bohr neighbourhoods on m we have that V ∩Q 6= ∅.

Thus
{n2 : n ∈N} = {0} ∪ {n2 : n ∈N}

and
{n3 : n ∈N} = {n3 : n ∈ Z}.
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Cliffhanger

Theorem (Ajtai, Havas and Komlós, 1980)

There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

The proof of this is very nice and we can go over it if people are
interested.
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What did we learn about the Bohr topology?

1 A basis of Bohr open sets comes from sets of the type
Nα(x , U).

2 Given a Bohr open set V ⊂ Z and m ∈ V there is a discrete
measure σ on T such that

σ̂(n) = 0 for n ∈ Z \ V and σ̂(m) = 1.

3 {n2 : n ∈N} = {0} ∪ {n2 : n ∈N}.
4 {n3 : n ∈N} = {n3 : n ∈ Z}.
5 There exists a sequence of natural numbers nk ; k ∈N which

is sparse, meaning, nk is an increasing sequence and the
differences nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.
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1 A basis of Bohr open sets comes from sets of the type
Nα(x , U).
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Structure of the talk

1 Why did I start caring?X
2 Proof of Riesz brothers’ theorem.X
3 A primer on the Bohr topology.X
4 How can Bohr topology help or hurt? Why does this work for

the square and not for the cubes. Why can’t it work for sparse
sequences?

5 Fermat’s last theorem and the cubes.

6 How do you prove something is not a Riesz set?

7 Wallen’s convolution theorem.
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Why do we care about the Bohr topology?
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Recalling what we know about Riesz sets

Definition

A set P ⊂ Z is called a Riesz set if for all measures µ for which

supp(µ̂) ⊂ P

we have that µ is absolutely continuous with respect to the
Lebesgue measure.

A set P ⊂ Z is a Riesz set if and only if its reflections and scalings
are Riesz sets. The Riesz brother’s theorem says that N form a
Riesz set.

Question

Are there other operations by which we can build new Riesz sets
from old ones?
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Silly Question

Is the union of two Riesz sets still a Riesz set?

Of course not. Both N and Z \N are Riesz sets? So to take
union we need stronger assumptions.
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Strong Riesz sets

A set Q ⊂ Z is a called a strong Riesz set if Q is still a Riesz set.

Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union
P ∪Q is also a Riesz set.

We just saw that
{n2 : n ∈N} = {0} ∪ {n2 : n ∈N} ⊂N∪ {0} is a strong
Riesz set. Hence

(−N) ∪ {n2 : n ∈N}

is a Riesz set.
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Strong Riesz sets

A set Q ⊂ Z is a called a strong Riesz set if Q is still a Riesz set.
Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union
P ∪Q is also a Riesz set.

We just saw that {n3 : n ∈N} = {n3 : n ∈ Z}. We do not
know if it is a strong Riesz set. Thus we do not know if

(−N) ∪ {n3 : n ∈N}

is a Riesz set.
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Strong Riesz sets

A set Q ⊂ Z is a called a strong Riesz set if Q is still a Riesz set.
Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union
P ∪Q is also a Riesz set.

If this wasn’t bad enough there are sparse sequences
{nk : k ∈N} such that

{nk : k ∈N} = Z.
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Strong Riesz sets

A set Q ⊂ Z is a called a strong Riesz set if Q is still a Riesz set.
Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union
P ∪Q is also a Riesz set.

As far as I can see this is the only technique known to prove that
sets are Riesz sets.
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We need a simple result before we can prove this theorem.

Given a measure µ on R/Z we denote its singular part by µs .
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Why do we care about atomic measures (How did Bohr
topology get in?) ?

Claim: Given a measure µ and an atomic measure σ,

(µ ? σ)s = µs ? σ.

Proof.

Let f ∈ L1(µl ) be such that dµ = µs + f dµl . Then

d(µ ? σ) = µs ? σ + f ? σ dµl .

Since µs ? σ is singular and f ? σµl is absolutely continuous the
lemma follows.

The key idea is that convolution of an atomic measure with an
absolutely continuous measure leaves it absolutely continuous and
convolution with a singular measure leaves it singular.
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Theorem

If P is a Riesz set and Q is a strong Riesz set then their union P ∪Q is also a Riesz set.

Proof.

Let µ be a measure such that supp(µ) ⊂ P ∪Q. We need to prove that
its singular component, µs = 0.

Let m ∈ Z \Q. There exists an atomic
measure σ such that σ̂(m) = 1 and σ̂(n) = 0 for all n ∈ Q.

Let ν := µ ? σ. Now supp(ν̂) ⊂ P. Since P is a Riesz set,

νs = µs ? σ = 0.

But then
0 = ν̂s (m) = µ̂s (m)σ̂(m) = µ̂s (m).

So for all m ∈ Z \Q we have that µ̂s (m) = 0.

Thus
supp(µ̂s ) ⊂ Q.

Since Q is a strong Riesz set we have that µs = 0.
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The squares, the cubes and some sparse sequences with
large closures

{n2 : n ∈N} = {0} ∪ {n2 : n ∈N}. So −N∪ {n2 : n ∈N}
is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets,
prime numbers and so on.

However for the cubes, {n3 : n ∈N} = {n3 : n ∈ Z}. So we
do not know whether the cubes form a Riesz set.

There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

135 / 197



The squares, the cubes and some sparse sequences with
large closures

{n2 : n ∈N} = {0} ∪ {n2 : n ∈N}. So −N∪ {n2 : n ∈N}
is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets,
prime numbers and so on.

However for the cubes, {n3 : n ∈N} = {n3 : n ∈ Z}. So we
do not know whether the cubes form a Riesz set.

There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

136 / 197



The squares, the cubes and some sparse sequences with
large closures

{n2 : n ∈N} = {0} ∪ {n2 : n ∈N}. So −N∪ {n2 : n ∈N}
is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets,
prime numbers and so on.

However for the cubes, {n3 : n ∈N} = {n3 : n ∈ Z}. So we
do not know whether the cubes form a Riesz set.

There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

137 / 197



The squares, the cubes and some sparse sequences with
large closures

{n2 : n ∈N} = {0} ∪ {n2 : n ∈N}. So −N∪ {n2 : n ∈N}
is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets,
prime numbers and so on.

However for the cubes, {n3 : n ∈N} = {n3 : n ∈ Z}. So we
do not know whether the cubes form a Riesz set.

There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

138 / 197



The squares, the cubes and some sparse sequences with
large closures

{n2 : n ∈N} = {0} ∪ {n2 : n ∈N}. So −N∪ {n2 : n ∈N}
is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets,
prime numbers and so on.

However for the cubes, {n3 : n ∈N} = {n3 : n ∈ Z}. So we
do not know whether the cubes form a Riesz set.

There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

139 / 197



Last time: Difference sets

We defined the difference set of a set A ⊂N as the following

∆(A) := {|a− b| : a, b ∈ A are distinct}.

We first defined ∆k sets as the collection of difference sets of
cardinality k , that is,

∆k := {∆(A) : A ⊂N and |S | = k}

and corresponding dual

∆?
k := {S ⊂N : S ∩ A 6= ∅ for all A ∈ ∆k}.

By Fermat’s last theorem we found that if Q is the set of cubes (or
some odd power of the integers) then N \Q is ∆?

3.
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Last time: Fermat’s last theorem

By Fermat’s last theorem we found that if Q is the set of cubes (or
some odd power of the integers) then N \Q is ∆?

3.

Theorem

Let µ be a probability measure and Q ⊂N be such that

1 N \Q is ∆∗3.

2 supp(µ̂) ⊂ Q ∪ (−Q) ∪ {0}.
Then µ is absolutely continuous.

We do not have any such result for ∆?
4 sets (which would cover

sparse sequences as well).

144 / 197



Last time: Fermat’s last theorem

By Fermat’s last theorem we found that if Q is the set of cubes (or
some odd power of the integers) then N \Q is ∆?

3.

Theorem

Let µ be a probability measure and Q ⊂N be such that

1 N \Q is ∆∗3.

2 supp(µ̂) ⊂ Q ∪ (−Q) ∪ {0}.
Then µ is absolutely continuous.

We do not have any such result for ∆?
4 sets (which would cover

sparse sequences as well).

145 / 197



Also John suggested that we make a finitary version of Riesz set
and see what it means for measures on Z/nZ. This I am yet to
do.

However here is something I promised last time.
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There exists a sequence of natural numbers nk ; k ∈N which is
sparse, meaning, nk is an increasing sequence and the differences
nk+1 − nk is also an increasing sequence such that

{nk : k ∈N} = Z.

Let us see why this is true.
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Sparse sets with large closures - Ajtai, Havas and Komlós,
1983

We will first need an equidistribution result.

Theorem

Let [nk , mk ] be a sequence of disjoint intervals such that

lim
k→∞

log mk

k
= 0

and mk − nk → ∞ as k → ∞. Let ak be chosen uniformly from the
interval [nk , mk ]. Then with probability 1 the following holds: For all
z ∈ T \ {1},

lim
K→∞

1

K

K

∑
k=1

zak = 0.

Note that these nk ’s and mk ’s can be made sparse.
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Sparse sets with large closures - Ajtai, Havas and Komlós,
1983

Theorem

Let [nk , mk ] be a sequence of disjoint intervals such that

lim
k→∞

log mk

k
= 0

and mk − nk → ∞ as k → ∞. Let ak be chosen uniformly from the
interval [nk , mk ]. Then with probability 1 the following holds: For all
z ∈ T \ {1},

lim
K→∞

1

K

K

∑
k=1

zak = 0.

The condition on the growth rate of mk is necessary by results by
Pollington (1979) and de Mathan (1980): Lacunary sets are closed in the
Bohr topology.
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A concentration inequality

Claim: Let Xk ; 1 ≤ k ≤ K be independent complex-valued random variables such
that |Xk | ≤ 1. Let SK := ∑K

k=1 Xk . If there exists ε ∈ (0, 1) such that

|E(SK )| ≤
ε

4
K

then

Prob(|SK | > εK ) < 4 exp

(
− ε2

100
K

)
.

Let us first assume that Xk is a real-valued random variable. By Markov’s inequality
and independence of the random variables Xk we have for t ∈ (0, 1)

Prob(SK > εK ) ≤ exp(−tεK )E(exp(tSK ))

≤ exp(−tεK )
K

∏
k=1

E(exp(tXk ))

≤ exp(−tεK )
K

∏
k=1

E(1 + tXk + t2))( if x ≤ 1 then 1 + x + x2 ≥ ex )

≤ exp(−tεK ) exp(E(tSK ) + t2K )

≤ exp(−tεK ) exp(t
ε

4
K + t2K ).
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Prob(SK > εK ) ≤ exp(−tεK ) exp(t
ε

4
K + t2K ).

Plugging in t = ε/4 we get that

Prob(SK > εK ) ≤ exp(− ε2

8
K ).

By a similar argument we can deduce that

Prob(SK < −εK ) ≤ exp(− ε2

8
K ).

Thus

Prob(|SK | > εK ) ≤ 2 exp(− ε2

8
K ).

Now suppose Xk = Yk + iZk where Xk satisfies the hypothesis of the lemma and
Yk ,Zk are real-valued. Then Yk and Zk also satisfy the hypothesis given above and
from this we can deduce the required result by a simple calculation.
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Claim: Let Xk ; 1 ≤ k ≤ K be independent complex-valued
random variables such that |Xk | ≤ 1. Let SK := ∑K

k=1 Xk . If there
exists ε ∈ (0, 1) such that

|E(SK )| ≤
ε

4
K

then

Prob(|SK | > εK ) < 4 exp

(
− ε2

100
K

)
.

So far we had this for real valued random variables. Extension to
complex valued random variables is a simple exercise (write
Xk = Yk + iZk) and use the result for the components.

Key take away from the claim: Control on expectation gives
control on probabilities.
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An equidistribution result

Let [nk ,mk ] be a sequence of disjoint intervals such that

lim
k→∞

logmk

k
= 0

and mk − nk → ∞ as k → ∞. Let ak be chosen uniformly from the interval [nk ,mk ]. Then with probability 1 the
following holds: For all z ∈ T \ {1},

lim
K→∞

1

K

K

∑
k=1

zak = 0.

Let Xk = zak and SK = ∑K
k=1 Xk . We want to bound |E(SK )|.
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|E(Xk (z))| =
1

mk − nk

∣∣∣∣∣ 1− zmk−nk+1

1− z

∣∣∣∣∣ ≤ 2

(mk − nk )|1− z | ≤
4

(mk − nk )|1− z | .

Then

|E(SK (z))| ≤ 4

|1− z |
K

∑
k=1

1

mk − nk
.
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An equidistribution result
Let [nk ,mk ] be a sequence of disjoint intervals such that
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Then

|E(SK (z))| ≤ 4

|1− z |
K

∑
k=1

1

mk − nk
.

Fix δ > 0. Let

qK :=
16

δK

K

∑
k=1

1

mk − nk
.

Clearly qK → 0 as K → ∞. If qK < |1− z | then

|E (SK (z)) | ≤ δ

4
K

and by concentration inequality,

Prob(|SK (z)| > δK ) < 4 exp(− δ2

100
K ).
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Since qK → 0, we can take K large enough such that

exp

(
− δ2

200
K

)
< 1− 2qK . (1)

Under the assumption that qK < |1− z |, there exists j ∈N such that for

z ′ := exp

{
2πij exp

(
− δ2

200
K

)}
,

we have that

|z ′ − z | < exp

{
− δ2

200
K

}
and qK < |1− z ′ |.

We have

|SK (z)| ≤
∣∣SK (z ′)

∣∣+ K

∑
k=1

|z ′ak − zak |

≤
∣∣SK (z ′)

∣∣+ K

∑
k=1

ak |z − z ′ |

≤
∣∣SK (z ′)

∣∣+K mK |z − z ′ |

≤
∣∣SK (z ′)

∣∣+K mK exp

(
− δ2

200
K

)
.

Choose K large enough such that mK < δ exp
{

δ2

200 K
}

and this would mean that

|SK (z)| ≤ |SK (z ′)|+ δK .
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An equidistribution result
Let [nk ,mk ] be a sequence of disjoint intervals such that

lim
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logmk

k
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and mk − nk → ∞ as k → ∞. Let ak be chosen uniformly from the interval [nk ,mk ]. Then with probability 1 the
following holds: For all z ∈ T \ {1},

lim
K→∞

1

K

K

∑
k=1

zak = 0.

Let Xk = zak and SK = ∑K
k=1 Xk .

If qK < |1− z | then

Prob(|SK (z)| > δK ) < 4 exp(− δ2

100
K ).

Further if qK < |1− z | then there exists z ′ ; |z ′ − z | < exp
{
− δ2

200 K
}

such that qK < |1− z ′ |,
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AK (δ) := {(an)n∈N : |SK (z)| > 2δK for some z , qK < |1− z |} .

By Borel-Cantelli lemma we have that almost every (an)n∈N, there exists
K0((an)n∈N) such that for all K > K0((an)n∈N),

(an)n∈N /∈ AK (δ).

Since qK is a decreasing sequence we have that for almost every
(an)n∈N, we have that

lim sup
K→∞

1

K
|

K

∑
k=1

zak | = 0

for all z ∈ T \ {1}.
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Sparse sets with large closures - Ajtai, Havas and Komlós,
1983

Theorem

Let [nk ,mk ] be a sequence of disjoint intervals such that

lim
k→∞

logmk

k
= 0

and mk − nk → ∞ as k → ∞. Let ak be chosen uniformly from the interval [nk ,mk ]. Then with probability 1 the
following holds: For all z ∈ T \ {1},

lim
K→∞

1

K

K

∑
k=1

zak = 0.

Thus there exists a sparse sequence ak such that for all z ∈ T \ {1},

lim
K→∞

1

K

K

∑
k=1

zak = 0.

What does this have to do with Bohr sets?
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From equidistribution to ergodic theorems

Theorem

Let (an)n∈N be a sequence of natural numbers such that

lim
N→∞

1

N

N

∑
n=1

zan = 0

for all z ∈ T \ {1}. Let (X , µ,T ) be a probability preserving transformation, I ⊂ L2(µ) be the set of L2 invariant

functions and f ∈ L2(µ). Then

1

N

N

∑
m=1

T am f → E(f | I) in L2(µ).

Proof.

Let νf denote the spectral measure corresponding to f . Let δ : T→ R denote the function

δ(z) =

{
1 when z = 1

0 otherwise.

Then we have that

|| 1

N

N

∑
m=1

T am f −E(f | I)||
L2(µ)

= || 1

N

N

∑
m=1

zam − δ||
L2(ν)

.

By the dominated convergence theorem, the right hand side converges to 0 and hence so does the left hand side.
This proves the required result.
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Choose a sparse sequence nk such that it satisfies the L2 ergodic
theorem.

We want to prove that {nk : k ∈N} = Z. Since the
shift of such a sequence will still satisfy the L2 ergodic theorem it
is sufficient to prove that

0 ∈ {nk : k ∈N}.

Choose a Bohr open set U containing 0. Then there is a toral
rotation (Td , α) and an open set V ⊂ Td such that

{n ∈N : (nα + V ) ∩ V 6= ∅} ⊂ U.

Since nk satisfies the ergodic theorem we have that

(nkα + V ) ∩ V 6= ∅

for some k . Thus nk ∈ U. This completes the proof.
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Structure of the talk

1 Why did I start caring?X
2 Proof of Riesz brothers’ theorem.X
3 A primer on the Bohr topology.X
4 How can Bohr topology help or hurt? Why does this work for

the square and not for the cubes. Why can’t it work for sparse
sequences?X

5 Fermat’s last theorem and the cubes.X
6 How do you prove something is not a Riesz set?

7 Wallen’s convolution theorem.
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Thank you!
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