About Riesz Sets

Nishant Chandgotia

Tata Institute of Fundamental Research, Bangalore

November, Bohring seminar

Some preliminaries

All measures in this talk will be complex-valued, outer-inner regular, finite and on the group \mathbb{R}/\mathbb{Z} (also denote by \mathbb{T}). The Fourier transform of μ is denoted by $\hat{\mu}$.

The Lebesgue measure on \mathbb{R}/\mathbb{Z} will be denoted by μ_l .

The support of a function $f : \mathbb{Z} \to \mathbb{C}$ is given by

$$\operatorname{supp}(f) = \{ n \in \mathbb{Z} : f(n) \neq 0 \}.$$

The basic definition

Definition A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

(1) If $P = \{p_1, p_2, \dots, p_n\}$ is a finite set and $\text{supp}(\hat{\mu}) \subset P$, then

$$d\mu(x) = \left(\sum_{t=1}^{n} a_t \exp(2\pi i p_t x)\right) d\mu_I(x)$$

for some $a_t \in \mathbb{C}$. Thus finite sets are Riesz sets.

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

- Finite sets are Riesz sets.
- ② Let *P* ⊂ \mathbb{Z} be a Riesz set, $\epsilon \in \{-1, 1\}$ and $n \in \mathbb{Z}$. Let us see why $\epsilon P + n$ is also a Riesz set.

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

- Finite sets are Riesz sets.
- 2 Let P ⊂ Z be a Riesz set, ε ∈ {-1, 1} and n ∈ Z. Let us see why εP + n is also a Riesz set. Let µ be a measure such that supp(µ̂) ⊂ εP + n.

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

- Finite sets are Riesz sets.
- 2 Let P ⊂ Z be a Riesz set, ε ∈ {-1, 1} and n ∈ Z. Let us see why εP + n is also a Riesz set. Let µ be a measure such that supp(µ̂) ⊂ εP + n. Let ν be a measure given by

 $d\nu(x) = \exp(2\pi i n x) d\mu(\epsilon x).$

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

- Finite sets are Riesz sets.
- 2 Let P ⊂ Z be a Riesz set, ε ∈ {-1, 1} and n ∈ Z. Let us see why εP + n is also a Riesz set. Let µ be a measure such that supp(µ̂) ⊂ εP + n. Let ν be a measure given by

$$d\nu(x) = \exp(2\pi i n x) d\mu(\epsilon x).$$

Then $supp(\hat{\nu}) \subset P$.

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

- Finite sets are Riesz sets.
- 2 Let P ⊂ Z be a Riesz set, ε ∈ {-1, 1} and n ∈ Z. Let us see why εP + n is also a Riesz set. Let µ be a measure such that supp(µ̂) ⊂ εP + n. Let ν be a measure given by

$$d\nu(x) = \exp(2\pi i n x) d\mu(\epsilon x).$$

Then $supp(\hat{v}) \subset P$. Since P is a Riesz set, v is absolutely continuous.

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

- Finite sets are Riesz sets.
- 2 Let P ⊂ Z be a Riesz set, ε ∈ {-1, 1} and n ∈ Z. Let us see why εP + n is also a Riesz set. Let µ be a measure such that supp(µ̂) ⊂ εP + n. Let ν be a measure given by

$$d\nu(x) = \exp(2\pi i n x) d\mu(\epsilon x).$$

Then $supp(\hat{v}) \subset P$. Since P is a Riesz set, v is absolutely continuous. Thus μ is absolutely continuous.

Here is a cute exercise. Let $k \in \mathbb{N}$. Prove that P is a Riesz set if and only if kP is a Riesz set.

Here is a cute exercise. Let $k \in \mathbb{N}$. Prove that P is a Riesz set if and only if kP is a Riesz set.

Hint: Use the map x to kx from \mathbb{R}/\mathbb{Z} to \mathbb{R}/\mathbb{Z} .

Can infinite sets be Riesz sets?

Can infinite sets be Riesz sets? This is already a non-trivial question and the answer to this lies in a beautiful theorem by F. and M. Riesz.

Natural numbers form a Riesz set

Theorem (Riesz brothers, 1923) The natural numbers form a Riesz set.

Of course they did not call it Riesz sets (this was Meyer's terminology).

Natural numbers form a Riesz set

Theorem (Riesz brothers, 1923) The natural numbers form a Riesz set.

Of course they did not call it Riesz sets (this was Meyer's terminology).

An infinite set of natural numbers $\{n_i : i \in \mathbb{N}\}$ is called a lacunary set if there is a $\lambda > 1$ such that $n_{i+1}/n_i > \lambda$ for all $i \in \mathbb{N}$.

Natural numbers form a Riesz set

Theorem (Riesz brothers, 1923) The natural numbers form a Riesz set.

Of course they did not call it Riesz sets (this was Meyer's terminology).

An infinite set of natural numbers $\{n_i : i \in \mathbb{N}\}$ is called a lacunary set if there is a $\lambda > 1$ such that $n_{i+1}/n_i > \lambda$ for all $i \in \mathbb{N}$. Rudin realised that he can prove the following extension.

Theorem (Rudin, 1960)

The union of the negative numbers and a lacunary set is a Riesz set.

In 1968, gave these sets a name and proved many interesting results about them.

Theorem (Meyer 1968)

The union of the negative numbers and the set of squares is a Riesz set.

I do not know if this holds for the cubes. This has much to do with the Bohr topology on the integers which we will discuss soon.

The Main question

The main question I want to advertise via this talk is the following.

We say that a sequence of natural numbers n_i is a sparse sequence if it is an increasing sequence such that the differences $n_{i+1} - n_i$ is also an increasing set

Question

Is the union of a sparse sequence with the negative integers a Riesz set?

The Main question

The main question I want to advertise via this talk is the following.

We say that a sequence of natural numbers n_i is a sparse sequence if it is an increasing sequence such that the differences $n_{i+1} - n_i$ is also an increasing set

Question

Is the union of a sparse sequence with the negative integers a Riesz set?

I must warn you that the Bohr topology will not help you anymore.

The Main question

The main question I want to advertise via this talk is the following.

We say that a sequence of natural numbers n_i is a sparse sequence if it is an increasing sequence such that the differences $n_{i+1} - n_i$ is also an increasing set

Question

Is the union of a sparse sequence with the negative integers a Riesz set?

I must warn you that the Bohr topology will not help you anymore.

Here is a partial answer to the question.

Theorem (Wallen, 1970)

Let $P \subset \mathbb{Z}$ be a set of the type given above and μ be a measure such that $supp(\hat{\mu}) \subset P$. Then $\mu \star \mu$ is absolutely continuous.

Structure of the talk

- Why did I start caring?
- Proof of Riesz brothers' theorem.
- ③ A primer on the Bohr topology.
- ④ How can Bohr topology help or hurt? Why does this work for the square and not for the cubes. Why can't it work for sparse sequences?
- 5 Fermat's last theorem and the cubes.
- 6 How do you prove something is not a Riesz set?
- Wallen's convolution theorem.

Why care?

Why care?

The short answer is that it is a very natural and basic question.

Why care?-Longer answer

A set $Q \subset \mathbb{N}$ is called a totally predictive set for all zero entropy processes X_i ; $i \in \mathbb{N}$, X_n is measurable function of X_i ; $i \in Q$ for all $n \in \mathbb{Z}$.

In a paper with Benjamin Weiss we proved that

(Under technical assumptions) If Q is a totally predictive set then $\mathbb{Z} \setminus Q$ is a Riesz set.

(Under technical assumptions) If $P \subset \mathbb{N}$ is such that $P \cup (-\mathbb{N})$ is a Riesz set then $\mathbb{N} \setminus P$ is a totally predictive set.

Further, there are many similarities in methods known to prove that a set is predictive and methods known to prove that a set is a Riesz set. But going too deep into this will take us far afield.

Proof of Riesz brothers' theorem (by Øksendal, 1971)

Something to confuse you with

We will shuttle between the \mathbb{R}/\mathbb{Z} version of the circle and $\{\exp(2\pi i x); x \in [0, 1]\}$ model of the circle. For this proof we will use the latter.

 ${\rm I\!N}$ is a Riesz set: polynomials integrate to zero

Let μ be a measure such that $supp(\hat{\mu}) \subset \mathbb{N}$. We will prove that μ is absolutely continuous.

$\mathbb N$ is a Riesz set: polynomials integrate to zero

Let μ be a measure such that $supp(\hat{\mu}) \subset \mathbb{N}$. We will prove that μ is absolutely continuous.

Equivalently for all trignometric polynomials p we have that

$$\int p d\mu = 0.$$

This implies for instance that

$$\int \frac{1}{1+rz} d\mu = 0$$

for r > 1.

This is what I want you to remember about μ .

Let F be a compact set such that $\mu_I(F) = 0$. It is enough to show that $\mu(F) = 0$.

Let F be a compact set such that $\mu_I(F) = 0$. It is enough to show that $\mu(F) = 0$.

Let $n \in \mathbb{N}$. Choose disjoint intervals U_i centred at $z_1, z_2, \ldots, z_N \in F$ and of radii r_1, r_2, \ldots, r_N such that they cover F

Let F be a compact set such that $\mu_I(F) = 0$. It is enough to show that $\mu(F) = 0$.

Let $n \in \mathbb{N}$. Choose disjoint intervals U_i centred at $z_1, z_2, \ldots, z_N \in F$ and of radii r_1, r_2, \ldots, r_N such that they cover F and

 $\mu_I(\cup_{i=1}^N U_i) < 1/n^2.$

Let F be a compact set such that $\mu_I(F) = 0$. It is enough to show that $\mu(F) = 0$.

Let $n \in \mathbb{N}$. Choose disjoint intervals U_i centred at $z_1, z_2, \ldots, z_N \in F$ and of radii r_1, r_2, \ldots, r_N such that they cover F and

$$\mu_I(\cup_{i=1}^N U_i) < 1/n^2.$$

Let $g_n : \mathbb{T} \to \mathbb{C}$ be given by

$$g_n(z) = 1 - \prod_{i=1}^N \frac{z - z_i}{z - (1 + nr_i)z_i}$$

Let F be a compact set such that $\mu_I(F) = 0$. It is enough to show that $\mu(F) = 0$.

Let $n \in \mathbb{N}$. Choose disjoint intervals U_i centred at $z_1, z_2, \ldots, z_N \in F$ and of radii r_1, r_2, \ldots, r_N such that they cover F and

$$\mu_I(\cup_{i=1}^N U_i) < 1/n^2.$$

Let $g_n : \mathbb{T} \to \mathbb{C}$ be given by

$$g_n(z) = 1 - \prod_{i=1}^N \frac{z - z_i}{z - (1 + nr_i)z_i}$$

We will show that g_n approximates the 1_F ; the indicator function of F.

$$g_n(z) = 1 - \prod_{i=1}^{N} \frac{z - z_i}{z - (1 + nr_i)z_i}$$
: What happens on F?
(1) $\int g_n d\mu = 0$ since g_n can be approximated uniformly by polynomials.

(1)
$$\int g_n d\mu = 0$$
 since g_n can be approximated uniformly by polynomials.

$$2 \left| \frac{z-z_i}{z-(1+nr_i)z_i} \right| \le 1 \text{ for all } z \in \mathbb{T}.$$

$$g_n(z) = 1 - \prod_{i=1}^N \frac{z-z_i}{z-(1+nr_i)z_i}$$
: What happens on F?

■
$$\int g_n d\mu = 0$$
 since g_n can be approximated uniformly by polynomials.

2
$$\left|\frac{z-z_i}{z-(1+nr_i)z_i}\right| \leq 1$$
 for all $z \in \mathbb{T}$.
3 $\left|\frac{z-z_i}{z-(1+nr_i)z_i}\right| \leq \frac{1}{n-1}$ for all $z \in U_i$ (ball of radius r_i around z_i).

$$g_n(z) = 1 - \prod_{i=1}^N \frac{z-z_i}{z-(1+nr_i)z_i}$$
: What happens on F?

(1)
$$\int g_n d\mu = 0$$
 since g_n can be approximated uniformly by polynomials.

2
$$\left|\frac{z-z_i}{z-(1+nr_i)z_i}\right| \leq 1$$
 for all $z \in \mathbb{T}$.
3 $\left|\frac{z-z_i}{z-(1+nr_i)z_i}\right| \leq \frac{1}{n-1}$ for all $z \in U_i$ (ball of radius r_i around z_i).
4 Thus $\left|g_n(z) - 1\right| \leq \frac{1}{n-1}$ for all $z \in F$.

$$g_n(z)| = \left|1 - \prod_{i=1}^N \left(1 + \frac{nr_i z_i}{z - (1 + nr_i)z_i}\right)\right|$$

$$|g_n(z)| = \left| 1 - \prod_{i=1}^N \left(1 + \frac{nr_i z_i}{z - (1 + nr_i) z_i} \right) \right|$$

$$\leq \prod_{i=1}^N \left(1 + \frac{nr_i}{|z - (1 + nr_i) z_i|} \right) - 1$$

$$g_n(z)| = \left| 1 - \prod_{i=1}^N \left(1 + \frac{nr_i z_i}{z - (1 + nr_i) z_i} \right) \right|$$

$$\leq \prod_{i=1}^N \left(1 + \frac{nr_i}{|z - (1 + nr_i) z_i|} \right) - 1$$

$$\leq \prod_{i=1}^N \left(1 + \frac{nr_i}{\delta} \right) - 1$$

$$\begin{aligned} g_n(z)| &= \left| 1 - \prod_{i=1}^N \left(1 + \frac{nr_i z_i}{z - (1 + nr_i) z_i} \right) \right| \\ &\leq \left| \prod_{i=1}^N \left(1 + \frac{nr_i}{|z - (1 + nr_i) z_i|} \right) - 1 \right| \\ &\leq \left| \prod_{i=1}^N \left(1 + \frac{nr_i}{\delta} \right) - 1 \right| \\ &\leq \left| \exp\left(\frac{n \sum_{i=1}^N r_i}{\delta} \right) - 1. \end{aligned}$$

$$|g_n(z)| = \left| 1 - \prod_{i=1}^N \left(1 + \frac{nr_i z_i}{z - (1 + nr_i) z_i} \right) \right|$$

$$\leq \prod_{i=1}^N \left(1 + \frac{nr_i}{|z - (1 + nr_i) z_i|} \right) - 1$$

$$\leq \prod_{i=1}^N \left(1 + \frac{nr_i}{\delta} \right) - 1$$

$$\leq \exp\left(\frac{n\sum_{i=1}^N r_i}{\delta}\right) - 1.$$

$$\leq \exp\left(\frac{1}{n\delta}\right) - 1 \to 0 \text{ as } n \to \infty.$$

Thus $g_n \to 1_F$ as $n \to \infty$. Recall we had $\int g_n d\mu = 0$. By dominated convergence theorem we have $\mu(F) = 0$. This concludes the proof.

Daniel pointed out that the product had a similar form as do Blashke products.

Structure of the talk

- 1 Why did I start caring? \checkmark
- ② Proof of Riesz brothers' theorem.√
- ③ A primer on the Bohr topology.
- ④ How can Bohr topology help or hurt? Why does this work for the square and not for the cubes. Why can't it work for sparse sequences?
- 5 Fermat's last theorem and the cubes.
- 6 How do you prove something is not a Riesz set?
- Wallen's convolution theorem.

Structure of the talk

- 1 Why did I start caring? \checkmark
- ② Proof of Riesz brothers' theorem.√
- ③ A primer on the Bohr topology.
- ④ How can Bohr topology help or hurt? Why does this work for the square and not for the cubes. Why can't it work for sparse sequences?
- 5 Fermat's last theorem and the cubes.
- 6 How do you prove something is not a Riesz set?
- Wallen's convolution theorem.

A primer on the Bohr topology

The Pontryagin dual

Let G be a locally compact abelian group. The Pontryagin dual of G is given by

 $\hat{G} := \{ \phi : G \to \mathbb{T} : \phi \text{ is a continuous group homomorphism} \}.$

The Pontryagin dual

Let G be a locally compact abelian group. The Pontryagin dual of G is given by

 $\hat{G} := \{ \phi : G \to \mathbb{T} : \phi \text{ is a continuous group homomorphism} \}.$

It is given the topology generated by the compact-open topology, that is, the topology generated by sets of the form

$$\{\phi: G \to \mathbb{T} : \phi(K) \subset U\}$$

where $K \subset G$ is compact and $U \subset \mathbb{T}$ is open.

We will need to worry about atomic measures on the torus. These are precisely all the Borel measures on \mathbb{T} with the discrete topology.

We will need to worry about atomic measures on the torus. These are precisely all the Borel measures on \mathbb{T} with the discrete topology. We denote this by \mathbb{T}_d .

We will need to worry about atomic measures on the torus. These are precisely all the Borel measures on \mathbb{T} with the discrete topology. We denote this by \mathbb{T}_d .

Let $\phi_n : \mathbb{T}_d \to \mathbb{T}$ be given by $\phi_n(\alpha) = n\alpha$. Notice the copy of \mathbb{Z} in $\hat{\mathbb{T}}_d$ given by $n \to \phi_n$.

We will need to worry about atomic measures on the torus. These are precisely all the Borel measures on \mathbb{T} with the discrete topology. We denote this by \mathbb{T}_d .

Let $\phi_n : \mathbb{T}_d \to \mathbb{T}$ be given by $\phi_n(\alpha) = n\alpha$. Notice the copy of \mathbb{Z} in $\hat{\mathbb{T}}_d$ given by $n \to \phi_n$.

The Bohr topology is the topology on this copy of $\mathbb Z$ induced by $\hat{\mathbb T}_d.$

We will need to worry about atomic measures on the torus. These are precisely all the Borel measures on \mathbb{T} with the discrete topology. We denote this by \mathbb{T}_d .

Let $\phi_n : \mathbb{T}_d \to \mathbb{T}$ be given by $\phi_n(\alpha) = n\alpha$. Notice the copy of \mathbb{Z} in $\hat{\mathbb{T}}_d$ given by $n \to \phi_n$.

The Bohr topology is the topology on this copy of $\mathbb Z$ induced by $\hat{\mathbb T}_d.$

OK! But what does this mean?

But what is Bohr topology?

Given a finite (compact) set $K \subset \mathbb{T}_d$ and an open set $U \subset \mathbb{T}$ let

$$O(K, U) := \{ n \in \mathbb{Z} : \phi_n(K) \subset U \}.$$

But what is Bohr topology?

Given a finite (compact) set $K \subset \mathbb{T}_d$ and an open set $U \subset \mathbb{T}$ let

$$O(K, U) := \{ n \in \mathbb{Z} : \phi_n(K) \subset U \}.$$

Sets of the type O(K, U) generate the Bohr topology. If $K = \alpha_1, \alpha_2, \ldots, \alpha_t$ then

 $O(K, U) := \{ n \in \mathbb{Z} \ : \ n \alpha_i \subset U \text{ for all } 1 \leq i \leq t \}.$

$O(K, U) := \{ n \in \mathbb{Z} : n \alpha_i \subset U \text{ for all } 1 \leq i \leq t \}.$

Given $\alpha \in \mathbb{T}^d$ and an open set $U \subset \mathbb{T}^d$ consider the visit times of $x \in \mathbb{T}^d$,

 $N(x, U) := \{ n \in \mathbb{Z} : n\alpha \in U \}.$

$O(K, U) := \{ n \in \mathbb{Z} \ : \ n \alpha_i \subset U \text{ for all } 1 \leq i \leq t \}.$

Given $\alpha \in \mathbb{T}^d$ and an open set $U \subset \mathbb{T}^d$ consider the visit times of $x \in \mathbb{T}^d$, $N(x, U) := \{n \in \mathbb{Z} : n\alpha \in U\}.$

Clearly this forms the basis for the Bohr topology.

The Bohr topology is the topology induced on \mathbb{Z} from $\hat{\mathbb{T}}_d$.

The Bohr topology is the topology induced on \mathbb{Z} from $\hat{\mathbb{T}}_d$.

It is generated by visit times of a rotation on a torus (in general on compact groups), that is,

The Bohr topology is the topology induced on \mathbb{Z} from $\hat{\mathbb{T}}_d$.

It is generated by visit times of a rotation on a torus (in general on compact groups), that is,

Given $\alpha \in \mathbb{T}^d$ and an open set $U \subset \mathbb{T}^d$ consider the visit times of $x \in \mathbb{T}^d$ given by

$$N(x, U) := \{ n \in \mathbb{Z} : n\alpha \in U \}.$$

The main fact that we need about the Bohr topology

Theorem

For all open sets $U \subset \mathbb{Z}$ and $n \in U$, there exists an atomic measure σ such that

$$\hat{\sigma}(n) = 1$$
 and $\hat{\sigma}|_{\mathbb{Z} \setminus U} = 0$.

This should remind you of Tietze's extension theorem from topology.

The proof is requires a little bit of background. I have often wondered if there is a simple elementary proof of this fact.

Let G be a locally compact abelian group. By $L^1(G)$ we mean the functions whose modulus is is integrable with respect to a Haar measure μ_{Haar} on the group.

Let G be a locally compact abelian group. By $L^1(G)$ we mean the functions whose modulus is is integrable with respect to a Haar measure μ_{Haar} on the group.

Given $f \in L^1(G)$, we write $\hat{f} : \hat{G} \to \mathbb{C}$ given by

$$\hat{f}(n) = \int_{\mathcal{G}} n(x) f(x) d\mu_{Haar}(x).$$

Let G be a locally compact abelian group. By $L^1(G)$ we mean the functions whose modulus is is integrable with respect to a Haar measure μ_{Haar} on the group.

Given $f \in L^1(G)$, we write $\hat{f} : \hat{G} \to \mathbb{C}$ given by

$$\hat{f}(n) = \int_{\mathcal{G}} n(x) f(x) d\mu_{\text{Haar}}(x).$$

If $G = \mathbb{T}_d$, the Haar measure is the counting measure and the Fourier transform is just $\hat{f}(n) = \int n(x)f(x)d\mu_{Haar}(x).$

for all $n \in \hat{\mathbb{T}}_d$.

Let G be a locally compact abelian group. By $L^1(G)$ we mean the functions whose modulus is is integrable with respect to a Haar measure μ_{Haar} on the group.

Given $f \in L^1(G)$, we write $\hat{f} : \hat{G} \to \mathbb{C}$ given by

$$\hat{f}(n) = \int_{\mathcal{G}} n(x) f(x) d\mu_{\text{Haar}}(x).$$

If $G = \mathbb{T}_d$, the Haar measure is the counting measure and the Fourier transform is just

$$\hat{f}(n) = \int n(x)f(x)d\mu_{Haar}(x).$$

for all $n \in \hat{\mathbb{T}}_d$.

But if $f \in L^1(\mathbb{T}_d)$ then it is supported on a countable set, that is, $f(x) = \sum_{j \in \mathbb{N}} a_j \delta_{x_j}(x)$.

Let G be a locally compact abelian group. By $L^1(G)$ we mean the functions whose modulus is is integrable with respect to a Haar measure μ_{Haar} on the group.

Given $f \in L^1(G)$, we write $\hat{f} : \hat{G} \to \mathbb{C}$ given by

$$\hat{f}(n) = \int_{\mathcal{G}} n(x) f(x) d\mu_{\text{Haar}}(x).$$

If $G = \mathbb{T}_d$, the Haar measure is the counting measure and the Fourier transform is just

$$\hat{f}(n) = \int n(x)f(x)d\mu_{Haar}(x).$$

for all $n \in \hat{\mathbb{T}}_d$.

But if $f \in L^1(\mathbb{T}_d)$ then it is supported on a countable set, that is, $f(x) = \sum_{j \in \mathbb{N}} a_j \delta_{x_j}(x)$.

Thus for $n \in \mathbb{Z}$ we have that

$$\hat{f}(n) = \int n(x)f(x)d\mu_{Haar}(x) = \sum_{j\in\mathbb{N}} n(x_j)a_j = \sum_{j\in\mathbb{N}} \exp(2\pi jnx_j)a_j.$$

Given $f \in L^1(\mathbb{T}_d)$, we can define an atomic measure $\mu_f = \sum_{j \in \mathbb{N}} a_j \delta_{x_j}$.

Given $f \in L^1(\mathbb{T}_d)$, we can define an atomic measure $\mu_f = \sum_{j \in \mathbb{N}} a_j \delta_{x_j}$.

We have then that the usual Fourier transform

$$\hat{\mu}_f(n) = \int_{\mathbb{T}} \exp(2\pi i n x) d\mu(x) = \sum_{j \in \mathbb{N}} \exp(2\pi j n x_j) a_j = \hat{f}(n).$$
What is the Fourier transform?

Given
$$f \in L^1(\mathbb{T}_d)$$
, we can define an atomic measure $\mu_f = \sum_{j \in \mathbb{N}} a_j \delta_{x_j}$.

We have then that the usual Fourier transform

$$\hat{\mu}_f(n) = \int_{\mathbb{T}} \exp(2\pi i n x) d\mu(x) = \sum_{j \in \mathbb{N}} \exp(2\pi j n x_j) a_j = \hat{f}(n).$$

Now we are ready for the proof.

Let $U' \subset \hat{\mathbb{T}}_d$ be an open set such that $U' \cap \mathbb{Z} = U$. Let μ_H denote the Haar (probability) measure on $\hat{\mathbb{T}}_d$.

Let $U' \subset \hat{\mathbb{T}}_d$ be an open set such that $U' \cap \mathbb{Z} = U$. Let μ_H denote the Haar (probability) measure on $\hat{\mathbb{T}}_d$.

By the continuity of the map from $\hat{\mathbb{T}}_d \times \hat{\mathbb{T}}_d \to \hat{\mathbb{T}}_d$ given by $(u, v) \to u - v$ there exists an open set $V \subset \hat{\mathbb{T}}_d$ containing 0 such that $n - (V - V) \subset U'$.

Let $U' \subset \hat{\mathbb{T}}_d$ be an open set such that $U' \cap \mathbb{Z} = U$. Let μ_H denote the Haar (probability) measure on $\hat{\mathbb{T}}_d$.

By the continuity of the map from $\hat{\mathbb{T}}_d \times \hat{\mathbb{T}}_d \to \hat{\mathbb{T}}_d$ given by $(u, v) \to u - v$ there exists an open set $V \subset \hat{\mathbb{T}}_d$ containing 0 such that $n - (V - V) \subset U'$.

Equivalently, $(\hat{\mathbb{T}}_d \setminus U') - V$ and n - V are disjoint.

 $(\hat{\mathbb{T}}_d \setminus U') - V$ and n - V are disjoint.

$$(\hat{\mathbb{T}}_d \setminus U') - V$$
 and $n - V$ are disjoint.

Since 1_V is in $L^{\infty}(\hat{\mathbb{T}}_d)$ we have that $\hat{1}_V \in L^1(\mathbb{T}_d) \subset L^2(\mathbb{T}_d)$.

$$(\hat{\mathbb{T}}_d \setminus U') - V$$
 and $n - V$ are disjoint.

Since 1_V is in $L^{\infty}(\hat{\mathbb{T}}_d)$ we have that $\hat{1}_V \in L^1(\mathbb{T}_d) \subset L^2(\mathbb{T}_d)$. Let $k \in L^1(\mathbb{T}_d)$ be given by

$$k:=\frac{1}{\mu(V)}\hat{1}_V\hat{1}_{n-V}.$$

$$(\hat{\mathbb{T}}_d \setminus U') - V$$
 and $n - V$ are disjoint.

Since 1_V is in $L^{\infty}(\hat{\mathbb{T}}_d)$ we have that $\hat{1}_V \in L^1(\mathbb{T}_d) \subset L^2(\mathbb{T}_d)$. Let $k \in L^1(\mathbb{T}_d)$ be given by

$$k:=\frac{1}{\mu(V)}\hat{1}_V\hat{1}_{n-V}.$$

Let σ be the atomic measure corresponding to k.

$$(\hat{\mathbb{T}}_d \setminus U') - V$$
 and $n - V$ are disjoint.

Since 1_V is in $L^{\infty}(\hat{\mathbb{T}}_d)$ we have that $\hat{1}_V \in L^1(\mathbb{T}_d) \subset L^2(\mathbb{T}_d)$. Let $k \in L^1(\mathbb{T}_d)$ be given by

$$k:=\frac{1}{\mu(V)}\hat{1}_V\hat{1}_{n-V}.$$

Let σ be the atomic measure corresponding to k. We have that

$$\hat{\sigma}(n) = \frac{1}{\mu(V)} \int_V \mathbf{1}_{n-V}(n-m) \, d\mu(m) = 1$$

$$(\hat{\mathbb{T}}_d \setminus U') - V$$
 and $n - V$ are disjoint.

Since 1_V is in $L^{\infty}(\hat{\mathbb{T}}_d)$ we have that $\hat{1}_V \in L^1(\mathbb{T}_d) \subset L^2(\mathbb{T}_d)$. Let $k \in L^1(\mathbb{T}_d)$ be given by

$$k:=\frac{1}{\mu(V)}\hat{1}_V\hat{1}_{n-V}.$$

Let σ be the atomic measure corresponding to k. We have that

$$\hat{\sigma}(n) = \frac{1}{\mu(V)} \int_V \mathbf{1}_{n-V}(n-m) \ d\mu(m) = 1$$

and for $s \in \mathbb{Z} \setminus U' = \mathbb{Z} \setminus U$ we have that $s - m \notin n - V$ for all $m \in V$

$$(\hat{\mathbb{T}}_d \setminus U') - V$$
 and $n - V$ are disjoint.

Since 1_V is in $L^{\infty}(\hat{\mathbb{T}}_d)$ we have that $\hat{1}_V \in L^1(\mathbb{T}_d) \subset L^2(\mathbb{T}_d)$. Let $k \in L^1(\mathbb{T}_d)$ be given by

$$k:=\frac{1}{\mu(V)}\hat{1}_V\hat{1}_{n-V}.$$

Let σ be the atomic measure corresponding to k. We have that

$$\hat{\sigma}(n) = \frac{1}{\mu(V)} \int_V \mathbf{1}_{n-V}(n-m) \, d\mu(m) = 1$$

and for $s \in \mathbb{Z} \setminus U' = \mathbb{Z} \setminus U$ we have that $s - m \notin n - V$ for all $m \in V$ and hence

$$\hat{\sigma}(s) = \frac{1}{\mu(V)} \int_{V} \mathbf{1}_{n-V}(s-m) \ d\mu(m) = 0.$$
^{83/1}

Thus σ is the required atomic measure.

Closures in the Bohr topology

Let us run through some simple examples the closure of Bohr topology.

Closures in the Bohr topology

Let us run through some simple examples the closure of Bohr topology.

But before that we have to introduce some results in ergodic theory.

A set $P \subset \mathbb{N}$ is called a Poincaré set if for probability preserving transformations (X, μ, T) and sets U of positive measures, there exists $n \in P$ such that

 $\mu(T^{-n}(U)\cap U)>0.$

A set $P \subset \mathbb{N}$ is called a Poincaré set if for probability preserving transformations (X, μ, T) and sets U of positive measures, there exists $n \in P$ such that

$$\mu(T^{-n}(U)\cap U)>0.$$

We will use the following result which I believe goes back to Furstenberg.

A set $P \subset \mathbb{N}$ is called a Poincaré set if for probability preserving transformations (X, μ, T) and sets U of positive measures, there exists $n \in P$ such that

 $\mu(T^{-n}(U)\cap U)>0.$

We will use the following result which I believe goes back to Furstenberg.

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

A set $P \subset \mathbb{N}$ is called a Poincaré set if for probability preserving transformations (X, μ, T) and sets U of positive measures, there exists $n \in P$ such that

 $\mu(T^{-n}(U)\cap U)>0.$

We will use the following result which I believe goes back to Furstenberg.

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

Remark: The set $p(\mathbb{Z}) \cap \mathbb{N}$ intersects every Bohr neighbourhood of 0 if and only if p has a root modulo m for every m.

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

Such polynomials are called intersective polynomials.

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

Such polynomials are called intersective polynomials.

Irreducible polynomials are not intersective. (Not immediate and the easiest proof requires a fair bit of Galois theory).

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

Such polynomials are called intersective polynomials.

Irreducible polynomials are not intersective. (Not immediate and the easiest proof requires a fair bit of Galois theory).

However for simple irreducible polynomials this is not difficult to prove directly. One can use this to prove the following result.

Theorem

Let $p : \mathbb{Z} \to \mathbb{Z}$ be a polynomial. The set $p(\mathbb{Z}) \cap \mathbb{N}$ is a Poincaré set if and only if p has a root modulo m for every m.

Such polynomials are called intersective polynomials.

Irreducible polynomials are not intersective. (Not immediate and the easiest proof requires a fair bit of Galois theory).

However for simple irreducible polynomials this is not difficult to prove directly. One can use this to prove the following result.

Theorem

Fix k = 2, 3. For all $t \in Z$,

$$\{n^k+t : n \in \mathbb{N}\} \cap \mathbb{N}$$

Theorem Fix k = 2, 3. For all $t \in Z$, $\{n^k + t : n \in \mathbb{N}\} \cap \mathbb{N}$ is a Poincaré set if and only if t has a k^{th} integral root.

96/197

Theorem Fix k = 2, 3. For all $t \in Z$, $\{n^k + t : n \in \mathbb{N}\} \cap \mathbb{N}$

is a Poincaré set if and only if t has a kth integral root.

One can use this to show quite easily that

Theorem

Fix k = 2, 3. For all $t \in Z$,

$$\{n^k+t : n \in \mathbb{N}\} \cap \mathbb{N}$$

intersects every Bohr neighbourhood of zero if and only if t has a k^{th} integral root.

The closure of sets

Theorem

Fix k = 2, 3. For all $t \in Z$,

$$\{n^k+t : n \in \mathbb{N}\} \cap \mathbb{N}$$

intersects every Bohr neighbourhood of zero if and only if t has a k^{th} integral root.

The closure of sets

Theorem Fix k = 2, 3. For all $t \in Z$, $\{n^k + t : n \in \mathbb{N}\} \cap \mathbb{N}$

intersects every Bohr neighbourhood of zero if and only if t has a k^{th} integral root.

Let $Q \subset \mathbb{Z}$ be a subset of integers. Recall that we have that $m \in \overline{Q}$ if all Bohr neighbourhoods on m we have that $V \cap Q \neq \emptyset$.

The closure of sets

Theorem Fix k = 2, 3. For all $t \in Z$, $\{n^k + t : n \in \mathbb{N}\} \cap \mathbb{N}$

intersects every Bohr neighbourhood of zero if and only if t has a k^{th} integral root.

Let $Q \subset \mathbb{Z}$ be a subset of integers. Recall that we have that $m \in \overline{Q}$ if all Bohr neighbourhoods on m we have that $V \cap Q \neq \emptyset$.

Thus

$$\overline{\{n^2 : n \in \mathbb{N}\}} = \{0\} \cup \overline{\{n^2 : n \in \mathbb{N}\}}$$

and

$$\overline{\{n^3 : n \in \mathbb{N}\}} = \{n^3 : n \in \mathbb{Z}\}.$$

Cliffhanger

Theorem (Ajtai, Havas and Komlós, 1980)

There exists a sequence of natural numbers n_k ; $k \in \mathbb{N}$ which is sparse, meaning, n_k is an increasing sequence and the differences $n_{k+1} - n_k$ is also an increasing sequence such that

$$\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}.$$

The proof of this is very nice and we can go over it if people are interested.

(1) A basis of Bohr open sets comes from sets of the type $N_{\alpha}(x, U)$.

- **(1)** A basis of Bohr open sets comes from sets of the type $N_{\alpha}(x, U)$.
- 2 Given a Bohr open set $V \subset \mathbb{Z}$ and $m \in V$ there is a discrete measure σ on \mathbb{T} such that

$$\hat{\sigma}(n) = 0$$
 for $n \in \mathbb{Z} \setminus V$ and $\hat{\sigma}(m) = 1$.

- A basis of Bohr open sets comes from sets of the type *N_α(x, U)*.
- 2 Given a Bohr open set $V \subset \mathbb{Z}$ and $m \in V$ there is a discrete measure σ on \mathbb{T} such that

$$\hat{\sigma}(n) = 0$$
 for $n \in \mathbb{Z} \setminus V$ and $\hat{\sigma}(m) = 1$.

- A basis of Bohr open sets comes from sets of the type *N_α(x, U)*.
- 2 Given a Bohr open set $V \subset \mathbb{Z}$ and $m \in V$ there is a discrete measure σ on \mathbb{T} such that

$$\hat{\sigma}(n) = 0$$
 for $n \in \mathbb{Z} \setminus V$ and $\hat{\sigma}(m) = 1$.

$$\frac{\overline{\{n^2 : n \in \mathbb{N}\}}}{\{n^3 : n \in \mathbb{N}\}} = \{0\} \cup \overline{\{n^2 : n \in \mathbb{N}\}}.$$

- A basis of Bohr open sets comes from sets of the type *N_α(x, U)*.
- 2 Given a Bohr open set $V \subset \mathbb{Z}$ and $m \in V$ there is a discrete measure σ on \mathbb{T} such that

$$\hat{\sigma}(n) = 0$$
 for $n \in \mathbb{Z} \setminus V$ and $\hat{\sigma}(m) = 1$.

- S There exists a sequence of natural numbers n_k; k ∈ N which is sparse, meaning, n_k is an increasing sequence and the differences n_{k+1} − n_k is also an increasing sequence such that

$$\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}.$$

Structure of the talk

- 1 Why did I start caring? \checkmark
- ② Proof of Riesz brothers' theorem.√
- 3 A primer on the Bohr topology. \checkmark
- ④ How can Bohr topology help or hurt? Why does this work for the square and not for the cubes. Why can't it work for sparse sequences?
- 5 Fermat's last theorem and the cubes.
- 6 How do you prove something is not a Riesz set?
- Wallen's convolution theorem.
Why do we care about the Bohr topology?

Recalling what we know about Riesz sets

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

A set $P \subset \mathbb{Z}$ is a Riesz set if and only if its reflections and scalings are Riesz sets. The Riesz brother's theorem says that \mathbb{N} form a Riesz set.

Recalling what we know about Riesz sets

Definition

A set $P \subset \mathbb{Z}$ is called a Riesz set if for all measures μ for which

 $\mathit{supp}(\hat{\mu}) \subset \mathit{P}$

we have that $\boldsymbol{\mu}$ is absolutely continuous with respect to the Lebesgue measure.

A set $P \subset \mathbb{Z}$ is a Riesz set if and only if its reflections and scalings are Riesz sets. The Riesz brother's theorem says that \mathbb{N} form a Riesz set.

Question

Are there other operations by which we can build new Riesz sets from old ones?

Silly Question

Is the union of two Riesz sets still a Riesz set?

Silly Question

Is the union of two Riesz sets still a Riesz set?

Of course not. Both *N* and $\mathbb{Z} \setminus \mathbb{N}$ are Riesz sets?

Silly Question

Is the union of two Riesz sets still a Riesz set?

Of course not. Both N and $\mathbb{Z} \setminus \mathbb{N}$ are Riesz sets? So to take union we need stronger assumptions.

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set.

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set. Nice. But what makes them strong?

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set. Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set. Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

We just saw that $\overline{\{n^2 : n \in \mathbb{N}\}} = \{0\} \cup \{n^2 : n \in \mathbb{N}\} \subset \mathbb{N} \cup \{0\} \text{ is a strong}$ Riesz set. Hence

 $(-\mathbb{N}) \cup \{n^2 : n \in \mathbb{N}\}$

is a Riesz set.

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set. Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

We just saw that $\overline{\{n^3 : n \in \mathbb{N}\}} = \{n^3 : n \in \mathbb{Z}\}$. We do not know if it is a strong Riesz set. Thus we do not know if

$$(-\mathbb{N}) \cup \{n^3 : n \in \mathbb{N}\}$$

is a Riesz set.

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set. Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

If this wasn't bad enough there are sparse sequences $\{n_k \; : \; k \in \mathbb{N}\}$ such that

$$\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}.$$

A set $Q \subset \mathbb{Z}$ is a called a strong Riesz set if \overline{Q} is still a Riesz set. Nice. But what makes them strong?

Here is the main theorem of the entire series of talks.

Theorem

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

As far as I can see this is the only technique known to prove that sets are Riesz sets.

We need a simple result before we can prove this theorem.

We need a simple result before we can prove this theorem.

Given a measure μ on \mathbb{R}/\mathbb{Z} we denote its singular part by μ_s .

Claim: Given a measure μ and an atomic measure σ ,

$$(\mu \star \sigma)_{s} = \mu_{s} \star \sigma.$$

Claim: Given a measure μ and an atomic measure σ ,

$$(\mu \star \sigma)_{s} = \mu_{s} \star \sigma.$$

Proof.

Let $f \in L^1(\mu_I)$ be such that $d\mu = \mu_s + f \ d\mu_I$.

Claim: Given a measure μ and an atomic measure σ ,

$$(\mu \star \sigma)_{\mathbf{s}} = \mu_{\mathbf{s}} \star \sigma.$$

Proof.

Let $f \in L^1(\mu_I)$ be such that $d\mu = \mu_s + f \ d\mu_I$. Then

$$d(\mu \star \sigma) = \mu_s \star \sigma + f \star \sigma \ d\mu_l.$$

Claim: Given a measure μ and an atomic measure σ ,

$$(\mu \star \sigma)_{s} = \mu_{s} \star \sigma.$$

Proof.

Let $f \in L^1(\mu_I)$ be such that $d\mu = \mu_s + f \ d\mu_I$. Then

$$d(\mu \star \sigma) = \mu_s \star \sigma + f \star \sigma \ d\mu_I.$$

Since $\mu_s \star \sigma$ is singular and $f \star \sigma \mu_I$ is absolutely continuous the lemma follows.

Claim: Given a measure μ and an atomic measure σ ,

$$(\mu \star \sigma)_{\mathbf{s}} = \mu_{\mathbf{s}} \star \sigma.$$

Proof.

Let $f \in L^1(\mu_I)$ be such that $d\mu = \mu_s + f \ d\mu_I$. Then

$$d(\mu \star \sigma) = \mu_s \star \sigma + f \star \sigma \ d\mu_I.$$

Since $\mu_s \star \sigma$ is singular and $f \star \sigma \mu_l$ is absolutely continuous the lemma follows.

The key idea is that convolution of an atomic measure with an absolutely continuous measure leaves it absolutely continuous and convolution with a singular measure leaves it singular.

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

Proof.

Let μ be a measure such that $supp(\mu) \subset P \cup \overline{Q}$. We need to prove that its singular component, $\mu_s = 0$.

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

Proof.

Let μ be a measure such that $supp(\mu) \subset P \cup \overline{Q}$. We need to prove that its singular component, $\mu_s = 0$. Let $m \in \mathbb{Z} \setminus \overline{Q}$. There exists an atomic measure σ such that $\hat{\sigma}(m) = 1$ and $\hat{\sigma}(n) = 0$ for all $n \in \overline{Q}$.

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

Proof.

Let μ be a measure such that $supp(\mu) \subset P \cup \overline{Q}$. We need to prove that its singular component, $\mu_s = 0$. Let $m \in \mathbb{Z} \setminus \overline{Q}$. There exists an atomic measure σ such that $\hat{\sigma}(m) = 1$ and $\hat{\sigma}(n) = 0$ for all $n \in \overline{Q}$.

Let $\nu := \mu \star \sigma$. Now $supp(\hat{\nu}) \subset P$. Since P is a Riesz set,

$$\nu_{s} = \mu_{s} \star \sigma = 0.$$

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

Proof.

Let μ be a measure such that $supp(\mu) \subset P \cup \overline{Q}$. We need to prove that its singular component, $\mu_s = 0$. Let $m \in \mathbb{Z} \setminus \overline{Q}$. There exists an atomic measure σ such that $\hat{\sigma}(m) = 1$ and $\hat{\sigma}(n) = 0$ for all $n \in \overline{Q}$.

Let $\nu := \mu \star \sigma$. Now $supp(\hat{\nu}) \subset P$. Since P is a Riesz set,

$$\nu_{s} = \mu_{s} \star \sigma = 0.$$

But then

$$0 = \hat{v}_s(m) = \hat{\mu}_s(m)\hat{\sigma}(m) = \hat{\mu}_s(m).$$

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

Proof.

Let μ be a measure such that $supp(\mu) \subset P \cup \overline{Q}$. We need to prove that its singular component, $\mu_s = 0$. Let $m \in \mathbb{Z} \setminus \overline{Q}$. There exists an atomic measure σ such that $\hat{\sigma}(m) = 1$ and $\hat{\sigma}(n) = 0$ for all $n \in \overline{Q}$.

Let $\nu := \mu \star \sigma$. Now $supp(\hat{\nu}) \subset P$. Since P is a Riesz set,

$$\nu_{s} = \mu_{s} \star \sigma = 0.$$

But then

$$0 = \hat{v}_{s}(m) = \hat{\mu}_{s}(m)\hat{\sigma}(m) = \hat{\mu}_{s}(m).$$

So for all $m \in \mathbb{Z} \setminus \overline{Q}$ we have that $\hat{\mu}_s(m) = 0$.

If P is a Riesz set and Q is a strong Riesz set then their union $P \cup Q$ is also a Riesz set.

Proof.

Let μ be a measure such that $supp(\mu) \subset P \cup \overline{Q}$. We need to prove that its singular component, $\mu_s = 0$. Let $m \in \mathbb{Z} \setminus \overline{Q}$. There exists an atomic measure σ such that $\hat{\sigma}(m) = 1$ and $\hat{\sigma}(n) = 0$ for all $n \in \overline{Q}$.

Let $\nu := \mu \star \sigma$. Now $supp(\hat{\nu}) \subset P$. Since P is a Riesz set,

$$\nu_{s} = \mu_{s} \star \sigma = 0.$$

But then

$$0 = \hat{v}_{s}(m) = \hat{\mu}_{s}(m)\hat{\sigma}(m) = \hat{\mu}_{s}(m).$$

So for all $m \in \mathbb{Z} \setminus \overline{Q}$ we have that $\hat{\mu}_s(m) = 0$.

Thus

$$supp(\hat{\mu}_s) \subset \overline{Q}.$$

Since Q is a strong Riesz set we have that $\mu_s = 0$.

$$\overline{\{n^2 : n \in \mathbb{N}\}} = \{0\} \cup \overline{\{n^2 : n \in \mathbb{N}\}}. \text{ So } -\mathbb{N} \cup \{n^2 : n \in \mathbb{N}\}$$

is a Riesz set.

$$\overline{\{n^2 : n \in \mathbb{N}\}} = \{0\} \cup \overline{\{n^2 : n \in \mathbb{N}\}}. \text{ So } -\mathbb{N} \cup \{n^2 : n \in \mathbb{N}\}$$

is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets, prime numbers and so on.

$$\overline{\{n^2 : n \in \mathbb{N}\}} = \{0\} \cup \overline{\{n^2 : n \in \mathbb{N}\}}. \text{ So } -\mathbb{N} \cup \{n^2 : n \in \mathbb{N}\}$$

is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets, prime numbers and so on.

However for the cubes, $\overline{\{n^3 : n \in \mathbb{N}\}} = \{n^3 : n \in \mathbb{Z}\}$. So we do not know whether the cubes form a Riesz set.

$$\overline{\{n^2 : n \in \mathbb{N}\}} = \{0\} \cup \overline{\{n^2 : n \in \mathbb{N}\}}. \text{ So } -\mathbb{N} \cup \{n^2 : n \in \mathbb{N}\}$$
is a Riesz set.

Similarly you can prove this for a finite union of lacunary sets, prime numbers and so on.

However for the cubes, $\overline{\{n^3 : n \in \mathbb{N}\}} = \{n^3 : n \in \mathbb{Z}\}$. So we do not know whether the cubes form a Riesz set.

There exists a sequence of natural numbers n_k ; $k \in \mathbb{N}$ which is sparse, meaning, n_k is an increasing sequence and the differences $n_{k+1} - n_k$ is also an increasing sequence such that

$$\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}.$$

We defined the difference set of a set $A \subset \mathbb{N}$ as the following

 $\Delta(A) := \{ |a - b| : a, b \in A \text{ are distinct} \}.$

We defined the difference set of a set $A \subset \mathbb{N}$ as the following

$$\Delta(A) := \{ |a - b| : a, b \in A \text{ are distinct} \}.$$

We first defined Δ_k sets as the collection of difference sets of cardinality k, that is,

$$\Delta_k := \{\Delta(A) \; : \; A \subset \mathbb{N} \; ext{and} \; |S| = k\}$$

We defined the difference set of a set $A \subset \mathbb{N}$ as the following

$$\Delta(A) := \{ |a - b| : a, b \in A \text{ are distinct} \}.$$

We first defined Δ_k sets as the collection of difference sets of cardinality k, that is,

$$\Delta_k := \{\Delta(A) \; : \; A \subset \mathbb{N} \text{ and } |S| = k\}$$

and corresponding dual

$$\Delta_k^\star := \{ S \subset \mathbb{N} \; : \; S \cap A \neq \emptyset \text{ for all } A \in \Delta_k \}.$$

We defined the difference set of a set $A \subset \mathbb{N}$ as the following

$$\Delta(A) := \{ |a - b| : a, b \in A \text{ are distinct} \}.$$

We first defined Δ_k sets as the collection of difference sets of cardinality k, that is,

$$\Delta_k := \{\Delta(A) \; : \; A \subset \mathbb{N} \; ext{and} \; |S| = k\}$$

and corresponding dual

$$\Delta_k^\star := \{ S \subset \mathbb{N} : S \cap A \neq \emptyset \text{ for all } A \in \Delta_k \}.$$

By Fermat's last theorem we found that if Q is the set of cubes (or some odd power of the integers) then $\mathbb{N} \setminus Q$ is Δ_3^* .

Last time: Fermat's last theorem

By Fermat's last theorem we found that if Q is the set of cubes (or some odd power of the integers) then $\mathbb{N} \setminus Q$ is Δ_3^* .

Theorem

Let μ be a probability measure and $Q \subset \mathbb{N}$ be such that

1 $\mathbb{N} \setminus Q$ is Δ_3^* .

②
$$supp(\hat{\mu}) ⊂ Q ∪ (-Q) ∪ \{0\}.$$

Then μ is absolutely continuous.
Last time: Fermat's last theorem

By Fermat's last theorem we found that if Q is the set of cubes (or some odd power of the integers) then $\mathbb{N} \setminus Q$ is Δ_3^* .

Theorem

Let μ be a probability measure and $Q \subset \mathbb{N}$ be such that

1 $\mathbb{N} \setminus Q$ is Δ_3^* .

$$a supp(\hat{\mu}) \subset Q \cup (-Q) \cup \{0\}.$$

Then μ is absolutely continuous.

We do not have any such result for Δ_4^* sets (which would cover sparse sequences as well).

Also John suggested that we make a finitary version of Riesz set and see what it means for measures on $\mathbb{Z}/n\mathbb{Z}$. This I am yet to do.

However here is something I promised last time.

There exists a sequence of natural numbers n_k ; $k \in \mathbb{N}$ which is sparse, meaning, n_k is an increasing sequence and the differences $n_{k+1} - n_k$ is also an increasing sequence such that

$$\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}.$$

There exists a sequence of natural numbers n_k ; $k \in \mathbb{N}$ which is sparse, meaning, n_k is an increasing sequence and the differences $n_{k+1} - n_k$ is also an increasing sequence such that

$$\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}.$$

Let us see why this is true.

We will first need an equidistribution result.

We will first need an equidistribution result.

Theorem

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0.$$

We will first need an equidistribution result.

Theorem

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0.$$

Note that these n_k 's and m_k 's can be made sparse.

Theorem

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0.$$

The condition on the growth rate of m_k is necessary by results by Pollington (1979) and de Mathan (1980): Lacunary sets are closed in the Bohr topology.

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{K}| > \epsilon K) < 4 \exp\left(-\frac{\epsilon^{2}}{100}K\right).$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

Let us first assume that X_k is a real-valued random variable.

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_K| > \epsilon K) < 4 \exp\left(-\frac{\epsilon^2}{100}K\right).$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

Let us first assume that X_k is a real-valued random variable. By Markov's inequality and independence of the random variables X_k we have for $t \in (0, 1)$

 $Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \le \exp(-t\epsilon \mathcal{K})\mathbb{E}(\exp(tS_{\mathcal{K}}))$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

$$\begin{aligned} \mathsf{Prob}(\mathsf{S}_{\mathsf{K}} > \epsilon \mathsf{K}) &\leq & \exp(-t\epsilon \mathsf{K}) \mathbb{E}(\exp(t\mathsf{S}_{\mathsf{K}})) \\ &\leq & \exp(-t\epsilon \mathsf{K}) \prod_{k=1}^{\mathsf{K}} \mathbb{E}(\exp(t\mathsf{X}_{k})) \end{aligned}$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

$$\begin{aligned} \operatorname{Prob}(S_{\mathcal{K}} > \epsilon \mathcal{K}) &\leq & \exp(-t\epsilon \mathcal{K}) \mathbb{E}(\exp(tS_{\mathcal{K}})) \\ &\leq & \exp(-t\epsilon \mathcal{K}) \prod_{k=1}^{\mathcal{K}} \mathbb{E}(\exp(tX_k)) \\ &\leq & \exp(-t\epsilon \mathcal{K}) \prod_{k=1}^{\mathcal{K}} \mathbb{E}(1 + tX_k + t^2))(\text{ if } x \leq 1 \text{ then } 1 + x + x^2 \geq e^x) \end{aligned}$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

$$\begin{aligned} \operatorname{Prob}(S_{K} > \epsilon K) &\leq & \exp(-t\epsilon K) \mathbb{E}(\exp(tS_{K})) \\ &\leq & \exp(-t\epsilon K) \prod_{k=1}^{K} \mathbb{E}(\exp(tX_{k})) \\ &\leq & \exp(-t\epsilon K) \prod_{k=1}^{K} \mathbb{E}(1 + tX_{k} + t^{2}))(\text{ if } x \leq 1 \text{ then } 1 + x + x^{2} \geq e^{x}) \\ &\leq & \exp(-t\epsilon K) \exp(\mathbb{E}(tS_{K}) + t^{2}K) \end{aligned}$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

Let us first assume that X_k is a real-valued random variable. By Markov's inequality and independence of the random variables X_k we have for $t \in (0, 1)$

$$\begin{aligned} \operatorname{Prob}(S_{K} > \epsilon K) &\leq & \exp(-t\epsilon K) \mathbb{E}(\exp(tS_{K})) \\ &\leq & \exp(-t\epsilon K) \prod_{k=1}^{K} \mathbb{E}(\exp(tX_{k})) \\ &\leq & \exp(-t\epsilon K) \prod_{k=1}^{K} \mathbb{E}(1+tX_{k}+t^{2}))(\text{ if } x \leq 1 \text{ then } 1+x+x^{2} \geq e^{x}) \\ &\leq & \exp(-t\epsilon K) \exp(\mathbb{E}(tS_{K})+t^{2}K) \\ &\leq & \exp(-t\epsilon K) \exp(t\frac{\epsilon}{4}K+t^{2}K). \end{aligned}$$

160 / 197

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

We had for $t \in (0, 1)$

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-t\epsilon \mathcal{K}) \exp(t\frac{\epsilon}{4}\mathcal{K} + t^2\mathcal{K}).$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

We had for $t \in (0, 1)$

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-t\epsilon \mathcal{K}) \exp(t\frac{\epsilon}{4}\mathcal{K} + t^2\mathcal{K}).$$

Plugging in $t = \epsilon/4$ we get that

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-\frac{\epsilon^2}{8}\mathcal{K}).$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

We had for $t \in (0, 1)$

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-t\epsilon \mathcal{K}) \exp(t\frac{\epsilon}{4}\mathcal{K} + t^2\mathcal{K}).$$

Plugging in $t = \epsilon/4$ we get that

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-\frac{\epsilon^2}{8}\mathcal{K}).$$

By a similar argument we can deduce that

$$Prob(S_{\mathcal{K}} < -\epsilon \mathcal{K}) \leq \exp(-\frac{\epsilon^2}{8}\mathcal{K}).$$

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{\mathcal{K}}| > \epsilon \mathcal{K}) < 4 \exp\left(-\frac{\epsilon^2}{100}\mathcal{K}\right).$$

We had for $t \in (0, 1)$

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-t\epsilon \mathcal{K}) \exp(t\frac{\epsilon}{4}\mathcal{K} + t^2\mathcal{K}).$$

Plugging in $t = \epsilon/4$ we get that

$$Prob(S_{\mathcal{K}} > \epsilon \mathcal{K}) \leq \exp(-\frac{\epsilon^2}{8}\mathcal{K}).$$

By a similar argument we can deduce that

$$Prob(S_{\mathcal{K}} < -\epsilon\mathcal{K}) \leq \exp(-\frac{\epsilon^2}{8}\mathcal{K})$$

Thus

$$Prob(|S_{K}| > \epsilon K) \leq 2 \exp(-\frac{\epsilon^{2}}{8}K).$$

164 / 197

Claim: Let X_k ; $1 \le k \le K$ be independent complex-valued random variables such that $|X_k| \le 1$. Let $S_K := \sum_{k=1}^K X_k$. If there exists $\epsilon \in (0, 1)$ such that

$$|\mathbb{E}(S_{\mathcal{K}})| \leq \frac{\epsilon}{4}\mathcal{K}$$

then

$$Prob(|S_{K}| > \epsilon K) < 4 \exp\left(-\frac{\epsilon^{2}}{100}K\right).$$

So far we had this for real valued random variables. Extension to complex valued random variables is a simple exercise (write $X_k = Y_k + iZ_k$) and use the result for the components.

Key take away from the claim: Control on expectation gives control on probabilities.

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0.$$

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0.$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$.

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k.$ We want to bound $|\mathbb{E}(S_K)|.$

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k \to \infty} \frac{\log m_k}{k} = 0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_{k}}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. We want to bound $|\mathbb{E}(S_K)|$.

Then

$$|\mathbb{E}(X_k(z))| = \frac{1}{m_k - n_k} \left| \frac{1 - z^{m_k - n_k + 1}}{1 - z} \right| \le \frac{2}{(m_k - n_k)|1 - z|} \le \frac{4}{(m_k - n_k)|1 - z|}$$

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k \to \infty} \frac{\log m_k}{k} = 0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_{k}}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. We want to bound $|\mathbb{E}(S_K)|$.

Then

$$|\mathbb{E}(X_k(z))| = \frac{1}{m_k - n_k} \left| \frac{1 - z^{m_k - n_k + 1}}{1 - z} \right| \le \frac{2}{(m_k - n_k)|1 - z|} \le \frac{4}{(m_k - n_k)|1 - z|}$$

Then

$$|\mathbb{E}(S_{K}(z))| \leq \frac{4}{|1-z|} \sum_{k=1}^{K} \frac{1}{m_{k} - n_{k}}$$

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. We want to bound $|\mathbb{E}(S_K)|$.

Then

$$|\mathbb{E}(S_{K}(z))| \leq \frac{4}{|1-z|} \sum_{k=1}^{K} \frac{1}{m_{k}-n_{k}}$$

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. We want to bound $|\mathbb{E}(S_K)|$.

Then

$$\mathbb{E}(S_{\mathcal{K}}(z))| \leq \frac{4}{|1-z|} \sum_{k=1}^{\mathcal{K}} \frac{1}{m_k - n_k}.$$

Fix $\delta > 0$. Let

$$q_K := \frac{16}{\delta K} \sum_{k=1}^K \frac{1}{m_k - n_k}.$$

Clearly $q_K \rightarrow 0$ as $K \rightarrow \infty$.

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. We want to bound $|\mathbb{E}(S_K)|$.

Then

$$\mathbb{E}(S_{\mathcal{K}}(z))| \leq \frac{4}{|1-z|} \sum_{k=1}^{\mathcal{K}} \frac{1}{m_k - n_k}.$$

Fix $\delta > 0$. Let

$$q_{K} := \frac{16}{\delta K} \sum_{k=1}^{K} \frac{1}{m_{k} - n_{k}}.$$

Clearly $q_K
ightarrow 0$ as $K
ightarrow \infty$. If $q_K < |1-z|$ then

$$|\mathbb{E}(S_{\mathcal{K}}(z))| \leq \frac{\delta}{4}\mathcal{K}$$

and

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. We want to bound $|\mathbb{E}(S_K)|$.

Then

$$\mathbb{E}(S_{\mathcal{K}}(z))| \leq \frac{4}{|1-z|} \sum_{k=1}^{\mathcal{K}} \frac{1}{m_k - n_k}.$$

Fix $\delta > 0$. Let

$$q_{K} := \frac{16}{\delta K} \sum_{k=1}^{K} \frac{1}{m_{k} - n_{k}}.$$

Clearly $q_K
ightarrow 0$ as $K
ightarrow \infty$. If $q_K < |1-z|$ then

$$|\mathbb{E}(S_{\mathcal{K}}(z))| \leq \frac{\delta}{4}K$$

and by concentration inequality,

$$Prob(|S_{K}(z)| > \delta K) < 4 \exp(-\frac{\delta^{2}}{100}K).$$

Since $q_K \rightarrow 0,$ we can take K large enough such that

$$\exp\left(-\frac{\delta^2}{200}K\right) < 1 - 2q_K.$$
 (1)

Since $q_{K} \rightarrow 0,$ we can take K large enough such that

$$\exp\left(-\frac{\delta^2}{200}K\right) < 1 - 2q_K.$$
 (1)

Under the assumption that $q_{\mathcal{K}} < |1-z|$, there exists $j \in \mathbb{N}$ such that for

$$z' := \exp\left\{2\pi i j \exp\left(-rac{\delta^2}{200}K
ight)
ight\}$$
 ,

we have that

$$|z'-z| < \exp\left\{-\frac{\delta^2}{200}\, K\right\} \text{ and } q_K < |1-z'|.$$

Since $q_{K} \rightarrow 0,$ we can take K large enough such that

$$\exp\left(-\frac{\delta^2}{200}K\right) < 1 - 2q_K.$$
 (1)

Under the assumption that $q_K < |1-z|$, there exists $j \in \mathbb{N}$ such that for

$$z' := \exp\left\{2\pi i j \exp\left(-rac{\delta^2}{200}K
ight)
ight\},$$

we have that

$$|z'-z| < \exp\left\{-rac{\delta^2}{200}\, K
ight\}$$
 and $q_K < |1-z'|.$

We have

$$\begin{split} S_{K}(z)| &\leq |S_{K}(z')| + \sum_{k=1}^{K} |z'^{a_{k}} - z^{a_{k}}| \\ &\leq |S_{K}(z')| + \sum_{k=1}^{K} a_{k}|z - z'| \\ &\leq |S_{K}(z')| + K \ m_{K}|z - z'| \\ &\leq |S_{K}(z')| + K \ m_{K} \exp\left(-\frac{\delta^{2}}{200} K\right). \end{split}$$

Since $q_{\mathcal{K}} \rightarrow$ 0, we can take \mathcal{K} large enough such that

$$\exp\left(-\frac{\delta^2}{200}K\right) < 1 - 2q_K.$$
 (1)

Under the assumption that $q_{\mathcal{K}} < |1-z|$, there exists $j \in \mathbb{N}$ such that for

$$z' := \exp\left\{2\pi i j \exp\left(-rac{\delta^2}{200}K
ight)
ight\},$$

we have that

$$|z'-z| < \exp\left\{-rac{\delta^2}{200}K
ight\}$$
 and $q_K < |1-z'|.$

We have

$$\begin{split} |S_{K}(z)| &\leq |S_{K}(z')| + \sum_{k=1}^{K} |z'^{a_{k}} - z^{a_{k}}| \\ &\leq |S_{K}(z')| + \sum_{k=1}^{K} a_{k}|z - z'| \\ &\leq |S_{K}(z')| + K \ m_{K}|z - z'| \\ &\leq |S_{K}(z')| + K \ m_{K} \exp\left(-\frac{\delta^{2}}{200} K\right). \end{split}$$

Choose K large enough such that $m_K < \delta \exp\left\{\frac{\delta^2}{200}K\right\}$ and this would mean that $|S_K(z)| \le |S_K(z')| + \delta K.$

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0.$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$.

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$.

If $q_K < |1-z|$ then

$$Prob(|S_{\mathcal{K}}(z)| > \delta \mathcal{K}) < 4 \exp(-\frac{\delta^2}{100} \mathcal{K}).$$
An equidistribution result

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. If $q_K < |1-z|$ then $Prob(|S_K(z)| > \delta K) < 4 \exp(-\frac{\delta^2}{100}K)$. Further if $q_K < |1-z|$ then there exists z'; $|z'-z| < \exp\left\{-\frac{\delta^2}{200}K\right\}$ such that $q_K < |1-z'|$, $|S_K(z)| \le |S_K(z')| + \delta K$ and hence

$$Prob(|S_{K}(z')| > 2\delta K) < 4\exp(-\frac{\delta^{2}}{100}K).$$

An equidistribution result

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. If $q_K < |1 - z|$ then $Prob(|S_K(z)| > \delta K) < 4 \exp(-\frac{\delta^2}{100}K).$ Further if $q_K < |1 - z|$ then there exists $z'; |z' - z| < \exp\left\{-\frac{\delta^2}{200}K\right\}$ such that $q_K < |1 - z'|$, $|S_K(z)| \le |S_K(z')| + \delta K$ and hence

$$Prob(|S_{K}(z')| > 2\delta K) < 4\exp(-\frac{\delta^{2}}{100}K).$$

Let

$$A_K(\delta):=\left\{(a_n)_{n\in\mathbb{N}}\ :\ |S_K(z)|>2\delta K \text{ for some } z; q_K<|1-z|\right\}.$$

An equidistribution result

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \to \infty$ as $k \to \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Let $X_k = z^{a_k}$ and $S_K = \sum_{k=1}^K X_k$. If $q_K < |1-z|$ then $Prob(|S_K(z)| > \delta K) < 4 \exp(-\frac{\delta^2}{100}K)$. Further if $q_K < |1-z|$ then there exists $z'; |z'-z| < \exp\left\{-\frac{\delta^2}{200}K\right\}$ such that $q_K < |1-z'|$, $|S_K(z)| \le |S_K(z')| + \delta K$ and hence

$$Prob(|S_{K}(z')| > 2\delta K) < 4\exp(-\frac{\delta^{2}}{100}K).$$

Let

$$A_{\mathcal{K}}(\delta) := \left\{ (a_n)_{n \in \mathbb{N}} \ : \ |S_{\mathcal{K}}(z)| > 2\delta \mathcal{K} \text{ for some } z; q_{\mathcal{K}} < |1-z| \right\}.$$

For large enough K,

$$Prob(A_{K}(\delta)) \leq 4 \exp\left(-\frac{\delta^{2}}{100}K\right) \exp\left(\frac{\delta^{2}}{200}K\right)$$

which is summable in K.

 $A_{\mathcal{K}}(\delta):=\left\{(a_n)_{n\in\mathbb{N}}\ :\ |\mathcal{S}_{\mathcal{K}}(z)|>2\delta\mathcal{K}\text{ for some }z,q_{\mathcal{K}}<|1-z|\right\}.$

$$A_{\mathcal{K}}(\delta) := \left\{ (a_n)_{n \in \mathbb{N}} : |S_{\mathcal{K}}(z)| > 2\delta \mathcal{K} \text{ for some } z, q_{\mathcal{K}} < |1-z| \right\}.$$

By Borel-Cantelli lemma we have that almost every $(a_n)_{n\in\mathbb{N}}$, there exists $\mathcal{K}_0((a_n)_{n\in\mathbb{N}})$ such that for all $\mathcal{K} > \mathcal{K}_0((a_n)_{n\in\mathbb{N}})$,

 $(a_n)_{n\in\mathbb{N}}\notin A_K(\delta).$

$$A_{\mathcal{K}}(\delta) := \left\{ (a_n)_{n \in \mathbb{N}} : |S_{\mathcal{K}}(z)| > 2\delta \mathcal{K} \text{ for some } z, q_{\mathcal{K}} < |1-z| \right\}.$$

By Borel-Cantelli lemma we have that almost every $(a_n)_{n\in\mathbb{N}}$, there exists $\mathcal{K}_0((a_n)_{n\in\mathbb{N}})$ such that for all $\mathcal{K} > \mathcal{K}_0((a_n)_{n\in\mathbb{N}})$,

 $(a_n)_{n\in\mathbb{N}}\notin A_K(\delta).$

Since q_K is a decreasing sequence we have that for almost every $(a_n)_{n \in \mathbb{N}}$, we have that

$$\limsup_{K\to\infty}\frac{1}{K}|\sum_{k=1}^{K}z^{a_k}|=0$$

for all $z \in \mathbb{T} \setminus \{1\}$.

Sparse sets with large closures - Ajtai, Havas and Komlós, 1983

Theorem

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k\to\infty}\frac{\log m_k}{k}=0$$

and $m_k - n_k \rightarrow \infty$ as $k \rightarrow \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Thus there exists a sparse sequence a_k such that for all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Sparse sets with large closures - Ajtai, Havas and Komlós, 1983

Theorem

Let $[n_k, m_k]$ be a sequence of disjoint intervals such that

$$\lim_{k \to \infty} \frac{\log m_k}{k} = 0$$

and $m_k - n_k \rightarrow \infty$ as $k \rightarrow \infty$. Let a_k be chosen uniformly from the interval $[n_k, m_k]$. Then with probability 1 the following holds: For all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

Thus there exists a sparse sequence a_k such that for all $z \in \mathbb{T} \setminus \{1\}$,

$$\lim_{K\to\infty}\frac{1}{K}\sum_{k=1}^{K}z^{a_k}=0$$

What does this have to do with Bohr sets?

Theorem

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of natural numbers such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N z^{a_n}=0$$

for all $z \in \mathbb{T} \setminus \{1\}$. Let (X, μ, T) be a probability preserving transformation, $\mathcal{I} \subset L^2(\mu)$ be the set of L^2 invariant functions and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{m=1}^{N}T^{am}f \to \mathbb{E}(f\mid \mathcal{I}) \text{ in } L^{2}(\mu).$$

Theorem

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N z^{a_n}=0$$

for all $z \in \mathbb{T} \setminus \{1\}$. Let (X, μ, T) be a probability preserving transformation, $\mathcal{I} \subset L^2(\mu)$ be the set of L^2 invariant functions and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{m=1}^{N}T^{a_m}f \to \mathbb{E}(f \mid \mathcal{I}) \text{ in } L^2(\mu).$$

Proof.

Let v_f denote the spectral measure corresponding to f.

Theorem

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N z^{a_n}=0$$

for all $z \in \mathbb{T} \setminus \{1\}$. Let (X, μ, T) be a probability preserving transformation, $\mathcal{I} \subset L^2(\mu)$ be the set of L^2 invariant functions and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{m=1}^{N}T^{a_m}f \to \mathbb{E}(f \mid \mathcal{I}) \text{ in } L^2(\mu).$$

Proof.

Let ν_f denote the spectral measure corresponding to f. Let $\delta: \mathbb{T} \to \mathbb{R}$ denote the function

$$\delta(z) = \begin{cases} 1 \text{ when } z = 1 \\ 0 \text{ otherwise.} \end{cases}$$

Theorem

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N z^{a_n}=0$$

for all $z \in \mathbb{T} \setminus \{1\}$. Let (X, μ, T) be a probability preserving transformation, $\mathcal{I} \subset L^2(\mu)$ be the set of L^2 invariant functions and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{m=1}^{N}T^{a_m}f \to \mathbb{E}(f \mid \mathcal{I}) \text{ in } L^2(\mu).$$

Proof.

Let ν_f denote the spectral measure corresponding to f. Let $\delta: \mathbb{T} \to \mathbb{R}$ denote the function

$$\delta(z) = \begin{cases} 1 \text{ when } z = 1 \\ 0 \text{ otherwise.} \end{cases}$$

Then we have that

$$||\frac{1}{N}\sum_{m=1}^{N}T^{am}f - \mathbb{E}(f \mid \mathcal{I})||_{L^{2}(\mu)} = ||\frac{1}{N}\sum_{m=1}^{N}z^{am} - \delta||_{L^{2}(\nu)}.$$

Theorem

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N z^{a_n}=0$$

for all $z \in \mathbb{T} \setminus \{1\}$. Let (X, μ, T) be a probability preserving transformation, $\mathcal{I} \subset L^2(\mu)$ be the set of L^2 invariant functions and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{m=1}^{N}T^{a_m}f \to \mathbb{E}(f \mid \mathcal{I}) \text{ in } L^2(\mu).$$

Proof.

Let ν_f denote the spectral measure corresponding to f. Let $\delta: \mathbb{T} \to \mathbb{R}$ denote the function

$$\delta(z) = \begin{cases} 1 \text{ when } z = 1 \\ 0 \text{ otherwise.} \end{cases}$$

Then we have that

$$||\frac{1}{N}\sum_{m=1}^{N}T^{am}f - \mathbb{E}(f\mid \mathcal{I})||_{L^{2}(\mu)} = ||\frac{1}{N}\sum_{m=1}^{N}z^{am} - \delta||_{L^{2}(\nu)}.$$

By the dominated convergence theorem, the right hand side converges to 0 and hence so does the left hand side. This proves the required result. \square 93 / 197 Choose a sparse sequence n_k such that it satisfies the L^2 ergodic theorem.

Choose a sparse sequence n_k such that it satisfies the L^2 ergodic theorem. We want to prove that $\overline{\{n_k : k \in \mathbb{N}\}} = \mathbb{Z}$.

$$0\in\overline{\{n_k : k\in\mathbb{N}\}}.$$

$$0\in\overline{\{n_k : k\in\mathbb{N}\}}.$$

Choose a Bohr open set U containing 0.

$$0\in\overline{\{n_k : k\in\mathbb{N}\}}.$$

Choose a Bohr open set U containing 0. Then there is a toral rotation (\mathbb{T}^d, α) and an open set $V \subset \mathbb{T}^d$ such that

$$\{n \in \mathbb{N} : (n\alpha + V) \cap V \neq \emptyset\} \subset U.$$

$$0\in\overline{\{n_k : k\in\mathbb{N}\}}.$$

Choose a Bohr open set U containing 0. Then there is a toral rotation (\mathbb{T}^d, α) and an open set $V \subset \mathbb{T}^d$ such that

$$\{n \in \mathbb{N} : (n\alpha + V) \cap V \neq \emptyset\} \subset U.$$

Since n_k satisfies the ergodic theorem we have that

$$(n_k\alpha + V) \cap V \neq \emptyset$$

for some k. Thus $n_k \in U$. This completes the proof.

Structure of the talk

- 1 Why did I start caring? \checkmark
- ② Proof of Riesz brothers' theorem.√
- 3 A primer on the Bohr topology.
- ④ How can Bohr topology help or hurt? Why does this work for the square and not for the cubes. Why can't it work for sparse sequences?√
- 5 Fermat's last theorem and the cubes. \checkmark
- 6 How do you prove something is not a Riesz set?
- Wallen's convolution theorem.

Thank you!